Skip to main content
Log in

Challenges and opportunities in distributed anti-Stokes Raman thermometry

  • Original Article
  • Published:
ISSS Journal of Micro and Smart Systems Aims and scope Submit manuscript

Abstract

Distributed sensing is a key requirement for the health and condition monitoring of several capital-intensive structures such as aerospace vehicles, bridges, dams, tunnels, oil/gas pipelines, and electric power distribution networks. Specifically, distributed temperature sensing is quite useful in several of the above applications, for which Raman scattering-based fiber sensors is a well-known solution. Distributed temperature sensing can be carried out by combining the Raman scattering phenomenon in optical fibers with optical time domain reflectometry (OTDR) to realize a Raman OTDR, and the overall method is referred to as distributed anti-Stokes Raman thermometry (DART). In this work, we have reviewed the current status, challenges and opportunities of DART system along with their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • Agrawal GP (2012) Fiber-optic communication systems, vol 222. Wiley, NY

    Google Scholar 

  • Alahbabi MN, Cho YT, Newson TP (2006) Long-range distributed temperature and strain optical fibre sensor based on the coherent detection of spontaneous brillouin scattering with in-line raman amplification. Meas Sci Technol 17(5):1082

    Google Scholar 

  • Bahrampour A, Moosavi A, Bahrampour M, Safaei L (2011) Spatial resolution enhancement in fiber raman distributed temperature sensor by employing forward deconvolution algorithm. Opt Fiber Technol 17(2):128–134

    Google Scholar 

  • Baidya S, Potdar V, Ray PP, Nandi C (2021) Reviewing the opportunities, challenges, and future directions for the digitalization of energy. Energy Res Soc Sci 81:102243

    Google Scholar 

  • Baldwin CS (2014) Brief history of fiber optic sensing in the oil field industry. In: Fiber Optic Sensors and Applications XI, vol. 9098, p 909803. International Society for Optics and Photonics

  • Bao X, Chen L (2011) Recent progress in brillouin scattering based fiber sensors. Sensors 11(4):4152–4187

    Google Scholar 

  • Barnoski M, Jensen S (1976) Fiber waveguides: a novel technique for investigating attenuation characteristics. Appl Opt 15(9):2112–2115

    Google Scholar 

  • Bazzo JP, Pipa DR, Martelli C, da Silva EV, da Silva JCC (2016) Improving spatial resolution of raman dts using total variation deconvolution. IEEE Sens J 16(11):4425–4430

    Google Scholar 

  • Bolognini G, Hartog A (2013) Raman-based fibre sensors: Trends and applications. Opt Fiber Technol 19(6):678–688

    Google Scholar 

  • Bolognini G, Park J, Soto MA, Park N, Di Pasquale F (2007) Analysis of distributed temperature sensing based on raman scattering using otdr coding and discrete raman amplification. Meas Sci Technol 18(10):3211

    Google Scholar 

  • Burunkaya M, Yucel M (2020) Measurement and control of an incubator temperature by using conventional methods and fiber bragg grating (fbg) based temperature sensors. J Med Syst 44(10):1–13

    Google Scholar 

  • Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imag Vision 20(1):89–97

    MathSciNet  MATH  Google Scholar 

  • Cirigliano M, Cattaneo G, Boffi P, Barberis A, Perini U, Pirovano G, Martinelli M (2009)Overhead power lines temperature measurements by a fiber optic raman sensor. In: 20th International Conference on Optical Fibre Sensors, vol. 7503, p. 75034 . International Society for Optics and Photonics

  • da Silva LCB, Samatelo JLA, Segatto MEV, Bazzo JP, da Silva JCC, Martelli C, Pontes MJ (2018) Narx neural network model for strong resolution improvement in a distributed temperature sensor. Appl Opt 57(20):5859–5864

    Google Scholar 

  • Dang Y, Zhao Z, Wang X, Liao R, Lu C (2019) Simultaneous distributed vibration and temperature sensing using multicore fiber. IEEE Access 7:151818–151826

    Google Scholar 

  • Datta A, Mamidala H, Venkitesh D, Srinivasan B (2019) Reference-free real-time power line monitoring using distributed anti-stokes raman thermometry for smart power grids. IEEE Sens J 20(13):7044–7052

    Google Scholar 

  • Datta A, Augustin M, Gaddikeri KM, Viswamurthy S, Gupta N, Sundaram R (2021) Damage detection in composite aircraft wing-like test-box using distributed fiber optic sensors. Opt Fiber Technol 66:102651

    Google Scholar 

  • Datta A, Raj V, Sankar V, Kalyani S, Srinivasan B (2021) Measurement accuracy enhancement with multi-event detection using the deep learning approach in raman distributed temperature sensors. Opt Express 29(17):26745–26764

    Google Scholar 

  • Datta A, Gajendran U, Srimal V, Venkitesh D, Srinivasan B (2011) Precise, rugged spectrum-based calibration of distributed anti-stokes raman thermometry systems. In: 2011 Asia Communications and Photonics Conference and Exhibition (ACP), pp 1–6 . IEEE

  • Datta A, Lagishetty BK, Srinivasan B (2010) Performance evaluation of temperature sensing system based on distributed anti-stokes raman thermometry. In: Optical Sensors, p 4 . Optical Society of America

  • Datta A, Srimal V, Srinivasan B (2011) Performance enhancement of raman optical time domain reflectometer using golay codes. In: Photonics 2010: Tenth International Conference on Fiber Optics and Photonics, vol. 8173, p 81731 . International Society for Optics and Photonics

  • Datta A, Venkitesh D, Srinivasan B (2011) Study of fundamental noise limits in distributed anti-stokes raman thermometry systems. In: Proc Frontiers Opt Photon Conf

  • Datta A, Viswamurthy S, Augustin M, Gupta N, Sundaram R et el (2014) Experimental studies using distributed fiber optic sensor for aircraft structural health monitoring applications. In: International Conference on Fibre Optics and Photonics, pp 3–4. Optical Society of America

  • Datta A, Viswanathan S, Srinivasan B (2020) Investigation of variation in measured temperature across different fibers in optical phase conductor cable using distributed anti-stokes raman thermometry. In: Optical Fiber Sensors, pp. 3–82 . Optical Society of America

  • de Pelegrin J, Dreyer UJ, Bazzo JP, da Silva JCC (2021) Faults diagnosis in induction motors through thermal mapping produced by the rdts system. IEEE Sensors Journal

  • Ding Z, Yang D, Du Y, Liu K, Zhou Y, Zhang R, Xu Z, Jiang J, Liu T (2016) Distributed strain and temperature discrimination using two types of fiber in ofdr. IEEE Photonics J 8(5):1–8

    Google Scholar 

  • Dong Y (2021) High-performance distributed brillouin optical fiber sensing. Photon Sensors 11(1):69–90

    Google Scholar 

  • Dopico M, Gómez A, De la Fuente D, García N, Rosillo R, Puche J (2016) A vision of industry 4.0 from an artificial intelligence point of view. In: Proceedings on the International Conference on Artificial Intelligence (ICAI), p. 407. The Steering Committee of The World Congress in Computer Science, Computer

  • Dowling JP, Seshadreesan KP (2014) Quantum optical technologies for metrology, sensing, and imaging. J Lightwave Technol 33(12):2359–2370

    Google Scholar 

  • Drusová S, Bakx W, Doornenbal PJ, Wagterveld RM, Bense VF, Offerhaus HL (2021)Comparison of three types of fiber optic sensors for temperature monitoring in a groundwater flow simulator. Sensors and Actuators A: Physical, 112682

  • Duus K, Schmitz G (2021) Experimental investigation of sustainable and energy efficient management of a geothermal field as a heat source and heat sink for a large office building. Energy Build 235:110726

    Google Scholar 

  • Dyer SD, Tanner MG, Baek B, Hadfield RH, Nam SW (2012) Analysis of a distributed fiber-optic temperature sensor using single-photon detectors. Opt Express 20(4):3456–3466

    Google Scholar 

  • Ekechukwu GK, Sharma J (2021) Well-scale demonstration of distributed pressure sensing using fiber-optic das and dts. Sci Rep 11(1):1–18

    Google Scholar 

  • Fang X, Zeng Y, Xiong F, Chen J, Cheng F (2021) A review of previous studies on dam leakage based on distributed optical fiber thermal monitoring technology. Sensor Review

  • Farahani MA, Gogolla T (1999) Spontaneous raman scattering in optical fibers with modulated probe light for distributed temperature raman remote sensing. J Lightwave Technol 17(8):1379

    Google Scholar 

  • Farries M, Rogers A (1984) Distributed sensing using stimulated raman interaction in a monomode optical fibre. In: 2nd Intl Conf on Optical Fiber Sensors: OFS’84, vol. 514, pp. 121–132. International Society for Optics and Photonics

  • Feced R, Farhadiroushan M, Handerek V, Rogers A (1997) Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique. IEE Proceedings-Optoelectronics 144(3), 183–188

  • Figueiredo MA, Dias JB, Oliveira JP, Nowak RD (2006) On total variation denoising: A new majorization-minimization algorithm and an experimental comparisonwith wavalet denoising. In: 2006 International Conference on Image Processing, pp 2633–2636. IEEE

  • Fritz AM, Lapo K, Freundorfer A, Linhardt T, Thomas CK (2021) Revealing the morning transition in the mountain boundary layer using fiber-optic distributed temperature sensing. Geophys Res Lett 48(9):2020–092238. https://doi.org/10.1029/2020GL092238

    Article  Google Scholar 

  • Froggatt M, Moore J (1998) High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter. Appl Opt 37(10):1735–1740

    Google Scholar 

  • Ghosh A, Chakraborty D, Law A (2018) Artificial intelligence in internet of things. CAAI Trans Intell Technol 3(4):208–218

    Google Scholar 

  • Hartog AH (2020) Distributed sensors in the oil and gas industry. Optical Fibre Sensors: Fundamentals for Development of Optimized Devices, 151–191

  • Hartog A (1995) Distributed fibre-optic temperature sensors: Technology and applications in the power industry. Power Eng J 9(3):114–120

    Google Scholar 

  • Hausner MB, Suárez F, Glander KE, Nvd Giesen, Selker JS, Tyler SW (2011) Calibrating single-ended fiber-optic raman spectra distributed temperature sensing data. Sensors 11(11):10859–10879

    Google Scholar 

  • Healey P (1986) Instrumentation principles for optical time domain reflectometry. J Phys E: Sci Instrum 19(5):334

    Google Scholar 

  • Höbel M, Ricka J, Wüthrich M, Binkert T (1995) High-resolution distributed temperature sensing with the multiphoton-timing technique. Appl Opt 34(16):2955–2967

    Google Scholar 

  • Hollenbeck D, Cantrell CD (2002) Multiple-vibrational-mode model for fiber-optic raman gain spectrum and response function. JOSA B 19(12):2886–2892

    Google Scholar 

  • Ishii H, Kawamura K, Ono T, Megumi H, Kikkawa A (1997) A fire detection system using optical fibres for utility tunnels. Fire Saf J 29(2–3):87–98

    Google Scholar 

  • Jensen FB, Takada E, Nakazawa M, Kakuta T, Yamamoto S (1996) Distributed raman temperature measurement system for monitoring of nuclear power plant coolant loops. In: Fiber Optic Sensors V, vol. 2895, pp. 132–143. International Society for Optics and Photonics

  • Jiang H, Zeng Q, Chen J, Qiu X, Liu X, Chen Z, Miao X (2019) Wavelength detection of model-sharing fiber bragg grating sensor networks using long short-term memory neural network. Opt Express 27(15):20583–20596

    Google Scholar 

  • Johnson DO, Sierra JR, Kaura JD, Gualtieri D (2006) Successful flow profiling of gas wells using distributed temperature sensing data. In: SPE Annual Technical Conference and Exhibition. OnePetro

  • Kaiser T (2000) Fire detection with temperature sensor arrays. In: Proceedings IEEE 34th Annual 2000 International Carnahan Conference on Security Technology (Cat. No. 00CH37083), pp. 262–268 . IEEE

  • Karanov B, Chagnon M, Thouin F, Eriksson TA, Bülow H, Lavery D, Bayvel P, Schmalen L (2018) End-to-end deep learning of optical fiber communications. J Lightwave Technol 36(20):4843–4855

    Google Scholar 

  • Kasinathan M, Sosamma S, Rao CB, Kumar A, Rao BPC, Murali N, Jayakumar T (2014) Monitoring sodium circuits using fiber optic sensors. IEEE Trans Nucl Sci 61(4):1971–1976

    Google Scholar 

  • Kimura A, Takada E, Fujita K, Nakazawa M, Takahashi H, Ichige S (2001) Application of a raman distributed temperature sensor to the experimental fast reactor joyo with correction techniques. Meas Sci Technol 12(7):966

    Google Scholar 

  • Krishna Paramathma M, Devaraj D, Agnes Idhaya Selvi V, Karuppasamypandiyan M (2021) Development of online demand response framework for smart grid infrastructure toward social welfare. Int Trans Electric Energy Syst 31(7):12909

    Google Scholar 

  • Kuznetsov AG, Kharenko DS, Babin SA, Tsydenzhapov I, Shelemba IS (2017) Ultralong fibre-optic distributed raman temperature sensor. Quantum Electron 47(10):967

    Google Scholar 

  • Laarossi I, Franco AP, Conde O, Quintela M, López-Higuera JM (2019) Rotdr signal enhancement via deep convolutional denoising autoencoders trained with domain randomization. In: Seventh European Workshop on Optical Fibre Sensors, vol. 11199, p 111993 . International Society for Optics and Photonics

  • Lagishetty BK, Srinivasan B (2009) Distributed temperature sensing using raman scattering in optical fibers

  • Lanier G, Brown G, Adams L (2003) Brunei field trial of a fibre optic distributed temperature sensor (dts) system in a 1,000 m open hole horizontal oil producer. In: SPE Annual Technical Conference and Exhibition . OnePetro

  • Lauber T, Lees G (2020) Enhanced temperature measurement performance: Fusing dts and das results. IEEE Sens J 21(6):7948–7953

    Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Google Scholar 

  • Li Z, Yan L, Zhang X, Pan W (2018) Temperature and strain discrimination in botda fiber sensor by utilizing dispersion compensating fiber. IEEE Sens J 18(17):7100–7105

    Google Scholar 

  • Li J, Li Y, Zhang M, Liu Y, Zhang J, Yan B, Wang D, Jin B (2018) Performance improvement of raman distributed temperature system by using noise suppression. Photonic Sens 8(2):103–113

    Google Scholar 

  • Li J, Yan B, Zhang M, Zhang J, Jin B, Wang Y, Wang D (2019) Long-range raman distributed fiber temperature sensor with early warning model for fire detection and prevention. IEEE Sens J 19(10):3711–3717

    Google Scholar 

  • Li J, Xu Y, Zhang M, Zhang J, Qiao L, Wang T (2019) Performance improvement in double-ended rdts by suppressing the local external physics perturbation and intermodal dispersion. Chin Opt Lett 17(7):070602

    Google Scholar 

  • Li Z, Zhang J, Wang M, Zhong Y, Peng F (2020) Fiber distributed acoustic sensing using convolutional long short-term memory network: a field test on high-speed railway intrusion detection. Opt Express 28(3):2925–2938

    Google Scholar 

  • Liao C, Wang D (2013) Review of femtosecond laser fabricated fiber bragg gratings for high temperature sensing. Photonic Sensors 3(2):97–101

    Google Scholar 

  • Liu X-J, Lu H, Yuan B-X, Wei Y-C, Yan Y (2018) A double-ended raman temperature measurement method for hazardous chemicals warehouse. Optik 169:62–68

    Google Scholar 

  • Liu Y, Ma L, Yang C, Tong W, He Z (2018) Long-range raman distributed temperature sensor with high spatial and temperature resolution using graded-index few-mode fiber. Opt Express 26(16):20562–20571

    Google Scholar 

  • Liu Y, Li X, Li H, Fan X (2020) Global temperature sensing for an operating power transformer based on raman scattering. Sensors 20(17):4903

    Google Scholar 

  • Li J, Zhou X, Yin Z, Wang C, Xu Y, Zhang J, Zhang M (2021) Reconstruction compression correlation demodulation for raman optical time domain reflection. Advanced Photonics Research, 2100047

  • Lohrmann D (2021) How secure is our smart grid? . https://www.govtech.com/blogs/lohrmann-on-cybersecurity/how-secure-is-our-smart-grid.html

  • Lu L, Liang Y, Li B, Guo J, Zhang H, Zhang X (2015) Experimental study on location of lightning stroke on opgw by means of a distributed optical fiber temperature sensor. Opt Laser Technol 65:79–82

    Google Scholar 

  • Lu P, Lalam N, Badar M, Liu B, Chorpening BT, Buric MP, Ohodnicki PR (2019) Distributed optical fiber sensing: Review and perspective. Appl Phys Rev 6(4):041302

    Google Scholar 

  • Lubieniecki M, Roemer J, Martowicz A, Wojciechowski K, Uhl T (2016) A multi-point measurement method for thermal characterization of foil bearings using customized thermocouples. J Electron Mater 45(3):1473–1477

    Google Scholar 

  • Maldaner CH, Munn JD, Coleman TI, Molson JW, Parker BL (2019) Groundwater flow quantification in fractured rock boreholes using active distributed temperature sensing under natural gradient conditions. Water Resour Res 55(4):3285–3306. https://doi.org/10.1029/2018WR024319

    Article  Google Scholar 

  • Manara J, Zipf M, Stark T, Arduini M, Ebert H-P, Tutschke A, Hallam A, Hanspal J, Langley M, Hodge D (2017) et el: Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines. Infrared Physics & Technology 80:120–130

    Google Scholar 

  • Manie YC, Peng P-C, Shiu R-K, Hsu Y-T, Chen Y-Y, Shao G-M, Chiu J (2020) Enhancement of the multiplexing capacity and measurement accuracy of fbg sensor system using iwdm technique and deep learning algorithm. J Lightwave Technol 38(6):1589–1603

    Google Scholar 

  • Maughan SM, Kee HH, Newson TP (2001) Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous brillouin backscatter. Meas Sci Technol 12(7):834

    Google Scholar 

  • McDaniel A, Harper M, Fratta D, Tinjum JM, Choi CY, Hart DJ (2016) Dynamic calibration of a fiber-optic distributed temperature sensing network at a district-scale geothermal exchange borefield. In: Geo-Chicago 2016, pp 1–11

  • Natarajan CM, Tanner MG, Hadfield RH (2012) Superconducting nanowire single-photon detectors: physics and applications. Supercond Sci Technol 25(6):063001

    Google Scholar 

  • Nazarathy M, Newton SA, Giffard R, Moberly D, Sischka F, Trutna W, Foster S (1989) Real-time long range complementary correlation optical time domain reflectometer. J Lightwave Technol 7(1):24–38

    Google Scholar 

  • O’Mahony N, Campbell S, Carvalho A, Harapanahalli S, Hernandez GV, Krpalkova L, Riordan D, Walsh J (2019) Deep learning vs. traditional computer vision. In: Science and Information Conference, pp 128–144 . Springer

  • Pan L, Liu K, Jiang J, Ma C, Tian M, Liu T (2016) A de-noising algorithm based on eemd in raman-based distributed temperature sensor. IEEE Sens J 17(1):134–138

    Google Scholar 

  • Pandian C, Kasinathan M, Sosamma S, Rao CB, Jayakumar T, Murali N, Raj B (2010) Single-fiber grid for improved spatial resolution in distributed fiber optic sensor. Opt Lett 35(10):1677–1679

    Google Scholar 

  • Pradhan HS, Sahu PK (2015) Characterisation of raman distributed temperature sensor using deconvolution algorithms. IET Optoelectron 9(2):101–107

    Google Scholar 

  • Raj V, Kalyani S (2018) Backpropagating through the air: Deep learning at physical layer without channel models. IEEE Commun Lett 22(11):2278–2281

    Google Scholar 

  • Rajagopal K (2008) Textbook of Engineering Physics vol. Part 1. PHI Learning Private Limited, ???

  • Rajan G (2017) Optical fiber sensors: advanced techniques and applications. CRC Press, FL

    Google Scholar 

  • ReportBuyer (2017) Overall Distributed Temperature Sensing (DTS) market forecast to reach USD 811.5 million by 2022 . https://www.prnewswire.com/news-releases/overall-distributed-temperature-sensing-dts-market-forecast.html

  • Rogers A (1999) Distributed optical-fibre sensing. Meas Sci Technol 10(8):75

    Google Scholar 

  • Rosolem JB, Bassan FR, de Freitas DE, Salgado FC (2017) Raman dts based on otdr improved by using gain-controlled edfa and pre-shaped simplex code. IEEE Sens J 17(11):3346–3353

    Google Scholar 

  • Sasaki Y, Furushima Y, Hosoda T, Murakami T, Hasumi H (1996) High power semiconductor laser diodes for otdrs. In: Optical Fiber Sensors, p 44 . Optical Society of America

  • Saxena MK, Raju S, Arya R, Pachori R, Ravindranath S, Kher S, Oak S (2015) Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of raman backscattered signals. Opt Laser Technol 65:14–24

    Google Scholar 

  • Schafer RW (2011) What is a savitzky-golay filter?[lecture notes]. IEEE Signal Process Mag 28(4):111–117

    Google Scholar 

  • Selesnick IW, Graber HL, Pfeil DS, Barbour RL (2014) Simultaneous low-pass filtering and total variation denoising. IEEE Trans Signal Process 62(5):1109–1124

    MathSciNet  MATH  Google Scholar 

  • Shatalin SV, Treschikov VN, Rogers AJ (1998) Interferometric optical time-domain reflectometry for distributed optical-fiber sensing. Appl Opt 37(24):5600–5604

    Google Scholar 

  • Simon DS (2016) Quantum sensors: Improved optical measurement via specialized quantum states. Journal of Sensors 2016

  • Smolen JJ, van der Spek A (2003) Distributed temperature sensing. A primer for Oil and Gas Production, Shell

  • Soto MA, Nannipieri T, Signorini A, Bolognini G, Di Pasquale F, Lazzeri A, Baronti F, Roncella R (2011) Advanced cyclic coding technique for long-range raman dts systems with meter-scale spatial resolution over standard smf. In: Sensors, 2011 IEEE, pp 878–881. IEEE

  • Soto M, Sahu P, Faralli S, Bolognini G, Di Pasquale F, Nebendahl B, Rueck C (2007) Distributed temperature sensor system based on raman scattering using correlation-codes. Electron Lett 43(16):862–864

    Google Scholar 

  • Soto MA, Signorini A, Nannipieri T, Faralli S, Bolognini G, Di Pasquale F (2011) Impact of loss variations on double-ended distributed temperature sensors based on raman anti-stokes signal only. J Lightwave Technol 30(8):1215–1222

    Google Scholar 

  • Soto MA, Ramirez JA, Thevenaz L (2016) Intensifying the response of distributed optical fibre sensors using 2d and 3d image restoration. Nat Commun 7(1):1–11

    Google Scholar 

  • Stierlin R, Ricka J, Zysset B, Bättig R, Weber HP, Binkert T, Borer W (1987) Distributed fiber-optic temperature sensor using single photon counting detection. Appl Opt 26(8):1368–1370

    Google Scholar 

  • Sun M, Tang Y, Yang S, Sigrist MW, Li J, Dong F (2017) Fiber optic distributed temperature sensing for fire source localization. Meas Sci Technol 28(8):085102

    Google Scholar 

  • Sundaram R, Gupta N, Mj A, Datta A (2016) 8th International Symposium on NDT in Aerospace, Structural Health Monitoring of Aircraft Composite Structures: Offline & Online Approach

  • Takeoka M, Seshadreesan KP, You C, Izumi S, Dowling JP (2017) Fundamental precision limit of a mach-zehnder interferometric sensor when one of the inputs is the vacuum. Phys Rev A 96(5):052118

    Google Scholar 

  • Tangudu R, Sahu PK (2021) Review on the developments and potential applications of the fiber optic distributed temperature sensing system. IETE Technical Review, 1–15

  • Tanner MG, Dyer SD, Baek B, Hadfield RH, Woo Nam S (2011) High-resolution single-mode fiber-optic distributed raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors. Appl Phys Lett 99(20):201110

    Google Scholar 

  • Tong J, Yang D, Gao Q, Lei Y, Chen X (2013) Research on raman-otdr sensing based optical phase conductor (oppc) temperature monitoring and the section temperature field. In: 2013 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, vol. 9044, p. 904405. International Society for Optics and Photonics

  • Ukil A, Braendle H, Krippner P (2011) Distributed temperature sensing: review of technology and applications. IEEE Sens J 12(5):885–892

    Google Scholar 

  • Van De Giesen N, Steele-Dunne SC, Jansen J, Hoes O, Hausner MB, Tyler S, Selker J (2012) Double-ended calibration of fiber-optic raman spectra distributed temperature sensing data. Sensors 12(5):5471–5485

    Google Scholar 

  • Vazquez GDB, Martínez OE, Kunik D (2016) Distributed temperature sensing using cyclic pseudorandom sequences. IEEE Sens J 17(6):1686–1691

    Google Scholar 

  • Wang ZL, Chang J, Zhang SS, Lv GP, Wang WJ, Jiang S, Liu XZ, Liu XH, Luo S, Sun BN (2013) et el: Spatial resolution improvement of distributed raman temperature measurement system. IEEE Sens J 13(11):4271–4278

    Google Scholar 

  • Wang M, Wu H, Tang M, Zhao Z, Dang Y, Zhao C, Liao R, Chen W, Fu S, Yang C (2017) et el: Few-mode fiber based raman distributed temperature sensing. Opt Express 25(5):4907–4916

    Google Scholar 

  • Wang X, Liu T, Wang H (2019) Research on noise reduction approach of raman-based distributed temperature sensor based on nonlinear filter. Open J Appl Sci 9(8):631–639

    Google Scholar 

  • Wang H, Wang S, Wang X, Liu T, Wang Y (2021) Rdts noise reduction: A fast method study based on signal waveform type. Opt Fiber Technol 65:102594

    Google Scholar 

  • White D (2020) Standard platinum resistance thermometer interpolations in a revised temperature scale. Metrologia 57(3):035003

    MathSciNet  Google Scholar 

  • Williams GR, Brown G, Hawthorne W, Hartog AH, Waite PC (2000) Distributed temperature sensing (dts) to characterize the performance of producing oil wells. In: Industrial Sensing Systems, vol. 4202, pp. 39–54. International Society for Optics and Photonics

  • Wu H, Zhao C, Liao R, Chang Y, Tang M (2018) Performance enhancement of rotdr using deep convolutional neural networks. In: Optical Fiber Sensors, p 16 . Optical Society of America

  • Xia J, Xia L, Yang Z, Huang P (2020) Attenuation calibration method based on sensitivity correction in a raman distributed temperature system. Appl Opt 59(2):300–305

    Google Scholar 

  • Xia D, Wang S, Zhu M, Tang H (2008) A method research on fire source localization using dual-line gas sensor array. In: 2008 7th World Congress on Intelligent Control and Automation, pp. 5862–5865. IEEE

  • Xie K, Zhao Y, Zhang H, Zhao Z, Lu Z, Chai Q, Zhang J (2018) Practice of optical fiber sensing technologies in power transmission lines and towers. In: 2018 International Conference on Power System Technology (POWERCON), pp. 3912–3918 . IEEE

  • Yan B, Li J, Zhang M, Zhang J, Qiao L, Wang T (2019) Raman distributed temperature sensor with optical dynamic difference compensation and visual localization technology for tunnel fire detection. Sensors 19(10):2320

    Google Scholar 

  • Yilmaz G, Karlik SE (2006) A distributed optical fiber sensor for temperature detection in power cables. Sens Actuators, A 125(2):148–155

    Google Scholar 

  • Yuan Z, Kardynal B, Sharpe A, Shields A (2007) High speed single photon detection in the near infrared. Appl Phys Lett 91(4):041114

    Google Scholar 

  • Zeller M-L, Huss J-M, Pfister L, Lapo KE, Littmann D, Schneider J, Schulz A, Thomas CK (2021) The ny-Ålesund turbulence fiber optic experiment (nytefox): investigating the arctic boundary layer, svalbard. Earth Syst Sci Data 13(7):3439–3452. https://doi.org/10.5194/essd-13-3439-2021

    Article  Google Scholar 

  • Zhang C, Jin Z (2019) Rdts-based two-dimensional temperature monitoring with high positioning accuracy using grid distribution. Sensors 19(22):4993

    Google Scholar 

  • Zhang L, Feng X, Zhang W, Liu X (2009) Improving spatial resolution in fiber raman distributed temperature sensor by using deconvolution algorithm. Chin Opt Lett 7(7):560–563

    Google Scholar 

  • Zhang Z, Wu H, Zhao C, Tang M (2020) High-performance raman distributed temperature sensing powered by deep learning. Journal of Lightwave Technology

  • Zhao Z, Dang Y, Tang M, Wang L, Gan L, Fu S, Yang C, Tong W, Lu C (2018) Enabling simultaneous das and dts through space-division multiplexing based on multicore fiber. J Lightwave Technol 36(24):5707–5713

    Google Scholar 

  • Zhu D, Yao Y, He J-J (2019) Laser-soa assembly for narrow-pulse, high-peak-power otdr application. In: 2019 Asia Communications and Photonics Conference (ACP), pp 1–3. IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Datta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, A., Sankar, V. & Srinivasan, B. Challenges and opportunities in distributed anti-Stokes Raman thermometry. ISSS J Micro Smart Syst 11, 179–206 (2022). https://doi.org/10.1007/s41683-022-00095-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41683-022-00095-8

Keywords

Navigation