Skip to main content
Log in

A High-Affinity Methyl-CpG-Binding Protein for Endonuclease-Free and Label-Free DNA Methyltransferase Activity Detection

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

DNA methyltransferase (MTase) activity detection has received increasing attention as a promising biomarker and therapeutic target. However, most of these detection methods rely on endonuclease digestion and signal groups labeling. Herein, we present a novel platform for sensing DNA MTase activity that overcomes these limitations. Our approach is both endonuclease-free and label-free, utilizing a combination of a high-affinity streptavidin-methyl-CpG-binding domain (SA-MBD) protein and surface plasmon resonance (SPR) technology. The SA-MBD protein specifically recognizes a hairpin probe containing methylated CpG sites, which is treated with M.SssI MTase. This recognition event generates a corresponding SPR response signal. The limit of detection is as low as 0.016 U/mL, owing to the high-affinity of the SA-MBD protein. Notably, we have demonstrated the feasibility of our method for M.SssI MTase activity analysis in serum and inhibitor screening, which implies the potential prospects for biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the finding reported herein are available on reasonable request from the corresponding author.

References

  1. Zhao S, Allis CD, Wang GG. The language of chromatin modification in human cancers. Nat Rev Cancer. 2021;21(7):413–30.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19(2):81–92.

    Article  CAS  PubMed  Google Scholar 

  3. Dukatz M, Dittrich M, Stahl E, Adam S, de Mendoza A, Bashtrykov P, Jeltsch A. DNA methyltransferase DNMT3A forms interaction networks with the CpG site and flanking sequence elements for efficient methylation. J Biol Chem. 2022;298(10):102462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carrot-Zhang J, Chambwe N, Damrauer JS, Knijnenburg TA, Robertson AG, Yau C, Zhou W, Berger AC, Huang KL, Newberg JY, Mashl RJ, Romanel A, Sayaman RW, Demichelis F, Felau I, Frampton GM, Han S, Hoadley KA, Kemal A, Laird PW, Lazar AJ, Le X, Oak N, Shen H, Wong CK, Zenklusen JC, Ziv E, Cancer Genome Atlas Analysis N, Cherniack AD, Beroukhim R. Comprehensive analysis of genetic ancestry and its molecular correlates in cancer. Cancer Cell. 2020;37(5):639–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shireby GL, Davies JP, Francis PT, Burrage J, Walker EM, Neilson GWA, Dahir A, Thomas AJ, Love S, Smith RG, Lunnon K, Kumari M, Schalkwyk LC, Morgan K, Brookes K, Hannon E, Mill J. Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex. Brain. 2020;143(12):3763–75.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang T, Liu XB, Kumar SK, Jin FY, Dai Y. Decoding DNA methylation in epigenetics of multiple myeloma. Blood Rev. 2022;51:100872.

    Article  CAS  PubMed  Google Scholar 

  7. Yoon JH, You BH, Park CH, Kim YJ, Nam JW, Lee SK. The long noncoding RNA LUCAT1 promotes tumorigenesis by controlling ubiquitination and stability of DNA methyltransferase 1 in esophageal squamous cell carcinoma. Cancer Lett. 2018;417:47–57.

    Article  CAS  PubMed  Google Scholar 

  8. Venugopal K, Feng Y, Nowialis P, Xu H, Shabashvili DE, Berntsen CM, Kaur P, Krajcik KI, Taragjini C, Zaroogian Z, Casellas Roman HL, Posada LM, Gunaratne C, Li J, Dupere-Richer D, Bennett RL, Pondugula S, Riva A, Cogle CR, Opavsky R, Law BK, Bhaduri-McIntosh S, Kubicek S, Staber PB, Licht JD, Bird JE, Guryanova OA. DNMT3A harboring leukemia-associated mutations directs sensitivity to DNA damage at replication forks. Clin Cancer Res. 2022;28(4):756–69.

    Article  CAS  PubMed  Google Scholar 

  9. Frumm SM, Shimony S, Stone RM, DeAngelo DJ, Bewersdorf JP, Zeidan AM, Stahl M. Why do we not have more drugs approved for MDS? A critical viewpoint on novel drug development in MDS. Blood Rev. 2023;60:101056.

    Article  CAS  PubMed  Google Scholar 

  10. Sorrentino VG, Thota S, Gonzalez EA, Rameshwar P, Chang VT, Etchegaray JP. Hypomethylating chemotherapeutic agents as therapy for myelodysplastic syndromes and prevention of acute myeloid leukemia. Pharmaceuticals (Basel). 2021;14(7):641.

    Article  CAS  PubMed  Google Scholar 

  11. Traynor S, Terp MG, Nielsen AY, Guldberg P, Jakobsen M, Pedersen PG, Gammelgaard OL, Pedersen CB, Pedersen MT, Rattenborg S, Ditzel HJ, Gjerstorff MF. DNA methyltransferase inhibition promotes recruitment of myeloid-derived suppressor cells to the tumor microenvironment through induction of tumor cell-intrinsic interleukin-1. Cancer Lett. 2023;552:215982.

    Article  CAS  PubMed  Google Scholar 

  12. Liu WJ, Zhang XY, Ma F, Zhang CY. Recent advance in nucleic acid amplification-integrated methods for DNA methyltransferase assay. TrAC-Trend Anal Chem. 2023;160:116998.

    Article  CAS  Google Scholar 

  13. Yu J, Chai X, Pang J, Wang Z, Zhao H, Xie T, Xu L, Sheng R, Li D, Zeng S, Hou T, Kang Y. Discovery of novel non-nucleoside inhibitors with high potency and selectivity for DNA methyltransferase 3A. Eur J Med Chem. 2022;242:114646.

    Article  CAS  PubMed  Google Scholar 

  14. Wen QL, Li DD, Huang GD, Xi H, Pan HC, Zhang LM, Li ZY, Xiao XF, Zhu WY. Ultrasensitive detection of DNA methyltransferase activity: a novel dual-amplification fluorescence technique. Analyst. 2022;147(22):4980–5.

    Article  CAS  PubMed  Google Scholar 

  15. Han Y, Wang C, Zou X, Zhang Y, Xu Q, Zhang CY. Construction of an APE1-mediated cascade signal amplification platform for homogeneously sensitive and rapid measurement of DNA methyltransferase in escherichia coli cells. Anal Chem. 2022;94(15):5980–6.

    Article  CAS  PubMed  Google Scholar 

  16. Li F, Chen Y, Shang J, Wang Q, He S, Xing X, Wang F. An isothermal autocatalytic hybridization reaction circuit for sensitive detection of DNA methyltransferase and inhibitors assay. Anal Chem. 2022;94(10):4495–503.

    Article  CAS  PubMed  Google Scholar 

  17. Liu JJ, Liu Y, Zhang LH, Fu SN, Su X. Ultra-specific fluorescence detection of DNA modifying enzymes by dissipation system. Biosens Bioelectron. 2022;215:114561.

    Article  CAS  PubMed  Google Scholar 

  18. Poh WJ, Wee CP, Gao Z. DNA methyltransferase activity assays: advances and challenges. Theranostics. 2016;6(3):369–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu YL, Tu YB, Wu HP, Zhang H, Chen HH, Zhou GH, Wang P, Gu YQ. A renewable DNA biosensor for sensitive detection of DNA methyltransferase activity based on cascade signal amplification. Sens Actuat B-Chem. 2020;313:128029.

    Article  CAS  Google Scholar 

  20. Zhu L, Lv X, Yu H, Tan X, Rong Y, Feng W, Zhang L, Yu J, Zhang Y. Paper-based bipolar electrode electrochemiluminescence platform combined with pencil-drawing trace for the detection of M.SssI methyltransferase. Anal Chem. 2022;94(23):8327–34.

    Article  CAS  PubMed  Google Scholar 

  21. Lin C, Huang Q, Tian M, Luo F, Wang J, Qiu B, Yang S, Lin Z. Electrochemiluminescence biosensor for DNA adenine methylation methyltransferase based on CRISPR/Cas12a trans-cleavage-induced dual signal enhancement. Talanta. 2023;251:123748.

    Article  CAS  PubMed  Google Scholar 

  22. Qing M, Fan Y, Chen SL, Luo HQ, Li NB. “Plug and play” microelectrode assisted with Y-motif-mediated primer-free cyclic signal amplification for sensitive quantitation of DNA methyltransferase activity. Biosens Bioelectron. 2021;192:113487.

    Article  CAS  PubMed  Google Scholar 

  23. Yuan W, Xiao K, Liu X, Lai Y, Luo F, Xiao W, Wu J, Pan P, Li Y, Xiao H. A programmable DNA nanodevice for colorimetric detection of DNA methyltransferase activity using functionalized hemin/G-quadruplex DNAzyme. Anal Chim Acta. 2023;1273:341559.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng ZK, Liu TT, Zhao HY, Cui L, Zhang XM. Dual-modal biosensor for highly sensitive and selective DNA methyltransferase activity detection based on a porous organic polymer-inorganic nanocomposite (Cu2O@FePPOPBADE) with high laccase-like activity. Sens Actuat B-Chem. 2022;372:132650.

    Article  CAS  Google Scholar 

  25. Hu HC, Wu SH, Jin LX, Sun JJ. Plasmonic Au nanocube enhanced SERS biosensor based on heated electrode and strand displacement amplification for highly sensitive detection of Dam methyltransferase activity. Biosens Bioelectron. 2022;210:114283.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Shi W, Li KB, Han DM, Xu JJ. Ultrasensitive and label-free detection of multiple DNA methyltransferases by asymmetric nanopore biosensor. Anal Chem. 2022;94(10):4407–16.

    Article  CAS  PubMed  Google Scholar 

  27. Liu SC, He M, Chen BB, Yin X, Kang Q, Xu Y, Hu B. A cascade amplification strategy for the detection of DNA methyltransferase activity by elemental labeling inductively coupled plasma mass spectrometry. Sensor Actuat B-Chem. 2022;362:131758.

    Article  CAS  Google Scholar 

  28. Ge SJ, Ran ML, Mao Y, Sun Y, Zhou XY, Li L, Cao XW. A novel DNA biosensor for the ultrasensitive detection of DNA methyltransferase activity based on a high-density “hot spot” SERS substrate and rolling circle amplification strategy. Analyst. 2021;146(17):5326–36.

    Article  CAS  PubMed  Google Scholar 

  29. Wang LJ, Liu H, Li XF, Meng YY, Qiu JG, Zhang CY. Methylation-powered engineering of a dual-color light-up RNA nanosensor for label-free and ultrasensitive sensing of multiple DNA methyltransferases. Sensor Actuat B-Chem. 2022;371:132524.

    Article  CAS  Google Scholar 

  30. Hou T, Xu N, Wang W, Ge L, Li F. Label-free and immobilization-free photoelectrochemical biosensing strategy using methylene blue in homogeneous solution as signal probe for facile DNA methyltransferase activity assay. Biosens Bioelectron. 2019;141:111395.

    Article  CAS  PubMed  Google Scholar 

  31. Ribeiro JA, Sales MGF, Pereira CM. Electrochemistry combined-surface plasmon resonance biosensors: a review. TrAC-Trend Anal Chem. 2022;157:116766.

    Article  CAS  Google Scholar 

  32. Gade A, Sharma A, Srivastava N, Flora SJS. Surface plasmon resonance: a promising approach for label-free early cancer diagnosis. Clin Chim Acta. 2022;527:79–88.

    Article  CAS  PubMed  Google Scholar 

  33. Dai Z, Xu X, Wang Y, Li M, Zhou K, Zhang L, Tan Y. Surface plasmon resonance biosensor with laser heterodyne feedback for highly-sensitive and rapid detection of COVID-19 spike antigen. Biosens Bioelectron. 2022;206:114163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yi JH, Wang ZX, Hu J, Yu T, Wang YD, Ge PF, Xianyu YL. Point-of-care detection of antioxidant in agarose-based test strip through antietching of Au@Ag nanostars. ACS Appl Mater Interfaces. 2023;15(25):29789–800.

    Article  CAS  PubMed  Google Scholar 

  35. Qin T, Zeng S. Study on the interaction between hepatitis B virus functional receptor NTCP and ligands by surface plasmon resonance. Chin J Anal Lab. 2022;41(9):999–1005.

    CAS  Google Scholar 

  36. Li ZM, Zhang X, Liang RP, Zheng XJ, Qiu JD. Amplification strategy for sensitive detection of methyltransferase activity based on surface plasma resonance techniques. Anal Chim Acta. 2018;1016:12–8.

    Article  CAS  PubMed  Google Scholar 

  37. Xia Y, Wu L, Hu Y, He Y, Cao Z, Zhu X, Yi X, Wang J. Sensitive surface plasmon resonance detection of methyltransferase activity and screening of its inhibitors amplified by p53 protein bound to methylation-specific ds-DNA consensus sites. Biosens Bioelectron. 2019;126:269–74.

    Article  CAS  PubMed  Google Scholar 

  38. Qin J, Zhang M, Guan Y, Li C, Ma X, Rankl C, Tang J. Investigation of the interaction between MeCP2 methyl-CpG binding domain and methylated DNA by single molecule force spectroscopy. Anal Chim Acta. 2020;1124:52–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lee J, Yoshida W, Abe K, Nakabayashi K, Wakeda H, Hata K, Marquette CA, Blum LJ, Sode K, Ikebukuro K. Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein. Biosens Bioelectron. 2017;93:118–23.

    Article  CAS  PubMed  Google Scholar 

  40. Kolkman RW, Michel-Souzy S, Wasserberg D, Segerink LI, Huskens J. Density control over MBD2 receptor-coated surfaces provides superselective binding of hypermethylated DNA. ACS Appl Mater Interfaces. 2022;14(36):40579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jorgensen HF, Adie K, Chaubert P, Bird AP. Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res. 2006;34(13): e96.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Richard Evans MON, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, Yim J, Ronneberger O, Bodenstein S, Zielinski M, Bridgland A, Potapenko A, Cowie A, Tunyasuvunakool K, Jain R, Clancy E, Kohli P, Jumper J, Hassabis D. Protein complex prediction with AlphaFold-Multimer. BioRxiv. 2021;10:463034.

    Google Scholar 

  44. Lee D, Baek S, Kim YY, Bang Y, Jung HN, Im HJ, Song YK. Self-assembled DNA-protein hybrid nanospheres: biocompatible nano-drug-carriers for targeted cancer therapy. ACS Appl Mater Interfac. 2022;14(33):37493–503.

    Article  CAS  Google Scholar 

  45. Wang H, Yang C, Wang L, Kong D, Zhang Y, Yang Z. Self-assembled nanospheres as a novel delivery system for taxol: a molecular hydrogel with nanosphere morphology. Chem Commun (Camb). 2011;47(15):4439–41.

    Article  CAS  PubMed  Google Scholar 

  46. Cui L, Shen JZ, Li CC, Cui PP, Luo XL, Wang XL, Zhang CY. Construction of a dye-sensitized and gold plasmon-enhanced cathodic photoelectrochemical biosensor for methyltransferase activity assay. Anal Chem. 2021;93(29):10310–6.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu L, Lv X, Yu HH, Tan XR, Rong YM, Feng WH, Zhang LN, Yu JH, Zhang Y. Paper-based bipolar electrode electrochemiluminescence platform combined with pencil-drawing trace for the detection of M.SssI methyltransferase. Anal Chem. 2022;94:8327–34.

    Article  CAS  PubMed  Google Scholar 

  48. An YQ, Yu ZQ, Liu D, Han LR, Zhang X, Xin XL, Li CP. HpaII-assisted and linear amplification-enhanced isothermal exponential amplification fluorescent strategy for rapid and sensitive detection of DNA methyltransferase activity. Anal Bioanal Chem. 2023;415(12):2271–80.

    Article  CAS  PubMed  Google Scholar 

  49. Li ZM, Zhang X, Pi T, Bu J, Deng RH, Chi BZ, Zheng XJ. Colorimetric determination of the activity of methyltransferase based on nicking enzyme amplification and the use of gold nanoparticles conjugated to graphene oxide. Microchim Acta. 2019;186(8):594.

    Article  CAS  Google Scholar 

  50. Zhou FY, Chen H, Fan TT, Guo ZX, Liu F. Fluorescence turn-off strategy for sensitive detection of DNA methyltransferase activity based on DNA-templated gold nanoclusters. Heliyon. 2023;9(7): e17724.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (61901527, 82300051), National Key Research and Development Program of China (2022YFF0710803, 2022YFF0710800) and Fundamental Research Funds for the Central Universities (2632021ZD02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiping Wu, Baicun Li or Yunlong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8343 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Tan, S., Sheng, Y. et al. A High-Affinity Methyl-CpG-Binding Protein for Endonuclease-Free and Label-Free DNA Methyltransferase Activity Detection. J. Anal. Test. (2024). https://doi.org/10.1007/s41664-024-00306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-024-00306-1

Keywords

Navigation