Skip to main content
Log in

The Application of Ion Mobility-Mass Spectrometry in Untargeted Metabolomics: from Separation to Identification

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Untargeted metabolomics aims to comprehensively profile metabolites as many as possible in biological samples. Recently, ion mobility-mass spectrometry (IM-MS) has emerged as a powerful technology for untargeted metabolomics. The emerging role of IM-MS in untargeted metabolomics enables the separation of metabolite isomers and generation of multidimension data to support the identification of metabolites. In this review, we first introduced the basic principles of IM-MS instruments commonly used for untargeted metabolomics. Then, we demonstrated the application of IM-MS for metabolite separation and identification of both known and unknown metabolites. Finally, we discussed the future developments of IM-MS technology to improve untargeted metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

reproduced from Ref. 22 with permission from the American Chemical Society; c was reproduced from Ref. 47 with permission from the Royal Society of Chemistry)

Fig. 3

reproduced from Ref. 50 with permission from the Royal Society of Chemistry; c was reproduced from Ref. 62 with permission from the American Chemical Society)

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Nicholson JK, Lindon JC. Metabonomics. Nature. 2008;455(7216):1054–6.

    CAS  PubMed  Google Scholar 

  2. Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263–9. https://doi.org/10.1038/nrm3314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fiehn O. Metabolomics—the link between genotypes and phenotypes. In: Functional genomics. Springer, 2002; pp 155–171.

  4. Kitano H. Systems biology: a brief overview. Science. 2002;295(5560):1662–4. https://doi.org/10.1126/science.1069492.

    Article  CAS  PubMed  Google Scholar 

  5. Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88(1):524–45.

    CAS  PubMed  Google Scholar 

  6. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L. Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol. 2004;5(9):763–9.

    CAS  PubMed  Google Scholar 

  7. Zhu ZJ, Schultz AW, Wang J, Johnson CH, Yannone SM, Patti GJ, Siuzdak G. Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc. 2013;8(3):451–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. TrAC, Trends Anal Chem. 2016;78:23–35.

    CAS  Google Scholar 

  9. Nichols CM, Dodds JN, Rose BS, Picache JA, Morris CB, Codreanu SG, May JC, Sherrod SD, McLean JA. Untargeted molecular discovery in primary metabolism: collision cross section as a molecular descriptor in ion mobility-mass spectrometry. Anal Chem. 2018;90(24):14484–92. https://doi.org/10.1021/acs.analchem.8b04322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lapthorn C, Pullen F, Chowdhry BZ. Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom Rev. 2013;32(1):43–71.

    CAS  PubMed  Google Scholar 

  11. May JC, Gant-Branum RL, McLean JA. Targeting the untargeted in molecular phenomics with structurally-selective ion mobility-mass spectrometry. Curr Opin Biotechnol. 2016;39:192–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc. 2017;12(4):797–813. https://doi.org/10.1038/nprot.2017.013.

    Article  CAS  PubMed  Google Scholar 

  13. Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem. 2014;6(4):281.

    CAS  PubMed  Google Scholar 

  14. May JC, McLean JA. Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem. 2015;87(3):1422–36.

    CAS  PubMed  Google Scholar 

  15. Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, Monroe ME, Moore RJ, Smith RD, Baker ES. Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Ann Rev Anal Chem. 2017;10:71–92.

    CAS  Google Scholar 

  16. May JC, Morris CB, McLean JA. Ion mobility collision cross section compendium. Anal Chem. 2016;89(2):1032–44. https://doi.org/10.1021/acs.analchem.6b04905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldórsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BQ, Astarita G. Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem. 2014;86(8):3985–93. https://doi.org/10.1021/ac500405x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Kew K, Reisdorph R, Sartain M, Powell R, Armstrong M, Quinn K, Cruickshank-Quinn C, Walmsley S, Bokatzian S, Darland E, Rain M, Imatani K, Reisdorph N. Performance of a high-pressure liquid chromatography–ion mobility-mass spectrometry system for metabolic profiling. Anal Chem. 2017;89(12):6384–91. https://doi.org/10.1021/acs.analchem.6b04628.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Z, Tu J, Zhu ZJ. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Curr Opin Chem Biol. 2018;42:34–41.

    CAS  PubMed  Google Scholar 

  20. Kolakowski BM, Mester Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst. 2007;132(9):842–64.

    CAS  PubMed  Google Scholar 

  21. Zhang JD, Mohibul Kabir KM, Lee HE, Donald WA. Chiral recognition of amino acid enantiomers using high-definition differential ion mobility mass spectrometry. Int J Mass Spectrom. 2018;428:1–7. https://doi.org/10.1016/j.ijms.2018.02.003.

    Article  CAS  Google Scholar 

  22. May JC, Goodwin CR, Lareau NM, Leaptrot KL, Morris CB, Kurulugama RT, Mordehai A, Klein C, Barry W, Darland E, Overney G, Imatani K, Stafford GC, Fjeldsted JC, McLean JA. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal Chem. 2014;86(4):2107–16. https://doi.org/10.1021/ac4038448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schroeder M, Meyer SW, Heyman HM, Barsch A, Sumner LW. Generation of a collision cross section library for multi-dimensional plant metabolomics using UHPLC-trapped ion mobility-MS/MS. Metabolites. 2019;10(1):13. https://doi.org/10.3390/metabo10010013.

    Article  CAS  PubMed Central  Google Scholar 

  24. Dodds JN, Baker ES. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J Am Soc Mass Spectrom. 2019;30(11):2185–95.

    CAS  PubMed  Google Scholar 

  25. Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JLP, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano IDG, Causon T, Clowers BH, Creaser CS, Pauw ED, Far J, Fernandez-Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ Jr, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T. Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrom Rev. 2019;38(3):291–32020. https://doi.org/10.1002/mas.21585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kurulugama RT, Darland E, Kuhlmann F, Stafford G, Fjeldsted J. Evaluation of drift gas selection in complex sample analyses using a high performance drift tube ion mobility-QTOF mass spectrometer. Analyst. 2015;140(20):6834–44.

    CAS  PubMed  Google Scholar 

  27. Stow SM, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, Rennie EE, Baker ES, Smith RD, McLean JA, Hann S, Fjeldsted JC. An interlaboratory evaluation of drift tube ion mobility–mass spectrometry collision cross section measurements. Anal Chem. 2017;89(17):9048–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hines KM, Ross DH, Davidson KL, Bush MF, Xu L. Large-scale structural characterization of drug and drug-like compounds by high-throughput ion mobility-mass spectrometry. Anal Chem. 2017;89(17):9023–30. https://doi.org/10.1021/acs.analchem.7b01709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng X, Aly NA, Zhou Y, Dupuis KT, Bilbao A, Paurus VL, Orton DJ, Wilson R, Payne SH, Smith RD, Baker ES. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci. 2017;8(11):7724–36. https://doi.org/10.1039/c7sc03464d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou Z, Shen X, Tu J, Zhu ZJ. Large-scale prediction of collision cross-section values for metabolites in ion mobility-mass spectrometry. Anal Chem. 2016;88(22):11084–91. https://doi.org/10.1021/acs.analchem.6b03091.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou Z, Tu J, Xiong X, Shen X, Zhu ZJ. LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility–mass spectrometry-based lipidomics. Anal Chem. 2017;89(17):9559–666. https://doi.org/10.1021/acs.analchem.7b02625.

    Article  CAS  PubMed  Google Scholar 

  32. Bush MF, Campuzano ID, Robinson CV. Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal Chem. 2012;84(16):7124–30.

    CAS  PubMed  Google Scholar 

  33. Hines KM, May JC, McLean JA, Xu L. Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal Chem. 2016;88(14):7329–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Giles K, Ujma J, Wildgoose J, Pringle S, Richardson K, Langridge D, Green M. A cyclic ion mobility-mass spectrometry system. Anal Chem. 2019;91(13):8564–73. https://doi.org/10.1021/acs.analchem.9b01838.

    Article  CAS  PubMed  Google Scholar 

  35. Tolmachev AV, Webb IK, Ibrahim YM, Garimella SV, Zhang X, Anderson GA, Smith RD. Characterization of ion dynamics in structures for lossless ion manipulations. Anal Chem. 2014;86(18):9162–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vasilopoulou CG, Sulek K, Brunner AD, Meitei NS, Schweiger-Hufnagel U, Meyer SW, Barsch A, Mann M, Meier F. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun. 2020;11(1):1–11.

    Google Scholar 

  37. Jeanne Dit Fouque K, Ramirez CE, Lewis RL, Koelmel JP, Garrett TJ, Yost RA, Fernandez-Lima F. Effective liquid chromatography-trapped ion mobility spectrometry-mass spectrometry separation of isomeric lipid species. Anal Chem. 2019;91(8):5021–7. https://doi.org/10.1021/acs.analchem.8b04979.

    Article  CAS  PubMed  Google Scholar 

  38. Hernandez-Mesa M, Le Bizec B, Monteau F, Garcia-Campana AM, Dervilly-Pinel G. Collision cross section (CCS) database: an additional measure to characterize steroids. Anal Chem. 2018;90(7):4616–25. https://doi.org/10.1021/acs.analchem.7b05117.

    Article  CAS  PubMed  Google Scholar 

  39. Dodds JN, May JC, McLean JA. Investigation of the complete suite of the leucine and isoleucine isomers: toward prediction of ion mobility separation capabilities. Anal Chem. 2016;89(1):952–9. https://doi.org/10.1021/acs.analchem.6b04171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leaptrot KL, May JC, Dodds JN, McLean JA. Ion mobility conformational lipid atlas for high confidence lipidomics. Nat Commun. 2019;10(1):985. https://doi.org/10.1038/s41467-019-08897-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ross DH, Seguin RP, Xu L. Characterization of the impact of drug metabolism on the gas-phase structures of drugs using ion mobility-mass spectrometry. Anal Chem. 2019;91(22):14498–50707. https://doi.org/10.1021/acs.analchem.9b03292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng X, Dupuis KT, Aly NA, Zhou Y, Smith FB, Tang K, Smith RD, Baker ES. Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal Chim Acta. 2018;1037:265–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wojcik R, Webb I, Deng L, Garimella S, Prost S, Ibrahim Y, Baker ES, Smith RD. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations. Int J Mol Sci. 2017;18(1):183. https://doi.org/10.3390/ijms18010183.

    Article  CAS  PubMed Central  Google Scholar 

  44. Poad BLJ, Zheng X, Mitchell TW, Smith RD, Baker ES, Blanksby SJ. Online ozonolysis combined with ion mobility-mass spectrometry provides a new platform for lipid isomer analyses. Anal Chem. 2018;90(2):1292–300. https://doi.org/10.1021/acs.analchem.7b04091.

    Article  CAS  PubMed  Google Scholar 

  45. Hofmann J, Hahm HS, Seeberger PH, Pagel K. Identification of carbohydrate anomers using ion mobility–mass spectrometry. Nature. 2015;526(7572):241–4. https://doi.org/10.1038/nature15388.

    Article  CAS  PubMed  Google Scholar 

  46. Wu Q, Wang JY, Han DQ, Yao ZP. Recent advances in differentiation of isomers by ion mobility mass spectrometry. TrAC Trends in Anal Chem. 2020;124:115801. https://doi.org/10.1016/j.trac.2019.115801.

    Article  CAS  Google Scholar 

  47. Domalain V, Hubert-Roux M, Tognetti V, Joubert L, Lange CM, Rouden J, Afonso C. Enantiomeric differentiation of aromatic amino acids using traveling wave ion mobility-mass spectrometry. Chem Sci. 2014;5(8):3234–9. https://doi.org/10.1039/c4sc00443d.

    Article  CAS  Google Scholar 

  48. Yu X, Yao ZP. Chiral differentiation of amino acids through binuclear copper bound tetramers by ion mobility mass spectrometry. Anal Chim Acta. 2017;981:62–70. https://doi.org/10.1016/j.aca.2017.05.026.

    Article  CAS  PubMed  Google Scholar 

  49. McCullagh M, Douce D, Van Hoeck E, Goscinny S. Exploring the complexity of steviol glycosides analysis using ion mobility mass spectrometry. Anal Chem. 2018;90(7):4585–95. https://doi.org/10.1021/acs.analchem.7b05002.

    Article  CAS  PubMed  Google Scholar 

  50. Picache JA, Rose BS, Balinski A, Leaptrot KL, Sherrod SD, May JC, McLean JA. Collision cross section compendium to annotate and predict multi-omic compound identities. Chem Sci. 2019;10(4):983–93. https://doi.org/10.1039/c8sc04396e.

    Article  CAS  PubMed  Google Scholar 

  51. Plante PL, Francovic-Fontaine E, May JC, McLean JA, Baker ES, Laviolette F, et al. Predicting ion mobility collision cross-sections using a deep neural network: DeepCCS. Anal Chem. 2019;91(8):5191–9. https://doi.org/10.1021/acs.analchem.8b05821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bijlsma L, Bade R, Celma A, Mullin L, Cleland G, Stead S, Hernandez F, Sancho JV. Prediction of collision cross-section values for small molecules: application to pesticide residue analysis. Anal Chem. 2017;89(12):6583–9. https://doi.org/10.1021/acs.analchem.7b00741.

    Article  CAS  PubMed  Google Scholar 

  53. Colby SM, Nunez JR, Hodas NO, Corley CD, Renslow RR. Deep learning to generate in silico chemical property libraries and candidate molecules for small molecule identification in complex samples. Anal Chem. 2020;92(2):1720–9. https://doi.org/10.1021/acs.analchem.9b02348.

    Article  CAS  PubMed  Google Scholar 

  54. Colby SM, Thomas DG, Nuñez JR, Baxter DJ, Glaesemann KR, Brown JM, Pirrung MA, Govind N, Teeguarden JG, Metz TO, Renslow RS. ISiCLE: a quantum chemistry pipeline for establishing in silico collision cross section libraries. Anal Chem. 2019;91(7):4346–56. https://doi.org/10.1021/acs.analchem.8b04567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mesleh M, Hunter J, Shvartsburg A, Schatz GC, Jarrold M. Structural information from ion mobility measurements: effects of the long-range potential. J Phys Chem. 1996;100(40):16082–6.

    CAS  Google Scholar 

  56. Zhou Z, Luo M, Chen X, Yin Y, Xiong X, Zhu ZJ. AllCCS Web server. https://allccs.zhulab.cn/. Accessed 25 April 2020.

  57. Stephan S, Hippler J, Köhler T, Deeb AA, Schmidt TC, Schmitz OJ. Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC+LC-IM-qTOF-MS using a CCS database. Anal Bioanal Chem. 2016;408(24):6545–55. https://doi.org/10.1007/s00216-016-9820-5.

    Article  CAS  PubMed  Google Scholar 

  58. Regueiro J, Negreira N, Berntssen MH. Ion-mobility-derived collision cross section as an additional identification point for multiresidue screening of pesticides in fish feed. Anal Chem. 2016;88(22):11169–77. https://doi.org/10.1021/acs.analchem.6b03381.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou Z, Shen X, Chen X, Tu J, Xiong X, Zhu ZJ. LipidIMMS analyzer: integrating multi-dimensional information to support lipid identification in ion mobility—mass spectrometry based lipidomics. Bioinformatics. 2019;35(4):698–700.

    CAS  PubMed  Google Scholar 

  60. Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H, Okahashi N, Yamada Y, Tada I, Bonini P, Higashi Y, Okazaki Y, Zhou ZW, Zhu ZJ, Koelmel J, Cajka T, Fiehn O, Saito K, Arita M, Arita M. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv. 2020:2020.02.11.944900. doi:10.1101/2020.02.11.944900.

  61. Goodwin CR, Fenn LS, Derewacz DK, Bachmann BO, McLean JA. Structural mass spectrometry: rapid methods for separation and analysis of peptide natural products. J Nat Prod. 2012;75(1):48–53. https://doi.org/10.1021/np200457r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bijlsma L, Berntssen MHG, Merel S. A refined nontarget workflow for the investigation of metabolites through the prioritization by in silico prediction tools. Anal Chem. 2019;91(9):6321–8. https://doi.org/10.1021/acs.analchem.9b01218.

    Article  CAS  PubMed  Google Scholar 

  63. Trim PJ, Henson CM, Avery JL, McEwen A, Snel MF, Claude E, Marshell PS, West A, Princivalle AP, Clench MR. Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal Chem. 2008;80(22):8628–34.

    CAS  PubMed  Google Scholar 

  64. Škrášková K, Claude E, Jones EA, Towers M, Ellis SR, Heeren RM. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods. 2016;104:69–78.

    PubMed  Google Scholar 

  65. Li H, Smith BK, Márk L, Nemes P, Nazarian J, Vertes A. Ambient molecular imaging by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Int J Mass Spectrom. 2015;377:681–9.

    CAS  Google Scholar 

  66. Causon TJ, Si-Hung L, Newton K, Kurulugama RT, Fjeldsted J, Hann S. Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics. Anal Bioanal Chem. 2019;411(24):6265–74. https://doi.org/10.1007/s00216-019-02021-8.

    Article  CAS  PubMed  Google Scholar 

  67. Zang X, Monge ME, Gaul DA, Fernandez FM. Flow injection-traveling-wave ion mobility-mass spectrometry for prostate-cancer metabolomics. Anal Chem. 2018;90(22):13767–74. https://doi.org/10.1021/acs.analchem.8b04259.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang X, Romm M, Zheng X, Zink EM, Kim YM, Burnum-Johnson KE, Orton DJ, Apffel A, Ibrahim YM, Monroe ME, Moore RJ, Smith JN, Ma J, Renslow RS, Thomas DG, Blackwell AE, Swinford G, Sausen J, Kurulugama RT, Eno N, Darland E, Stafford G, Fjeldsted J, Metz TO, Teeguarden JG, Smith RD, Baker ES. SPE-IMS-MS: an automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids. Clin Mass Spectrom. 2016;2:1–10. https://doi.org/10.1016/j.clinms.2016.11.002.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang L, Foreman DP, Grant PA, Shrestha B, Moody SA, Villiers F, Kwak JM, Vertes A. In situ metabolic analysis of single plant cells by capillary microsampling and electrospray ionization mass spectrometry with ion mobility separation. Analyst. 2014;139(20):5079–85. https://doi.org/10.1039/c4an01018c.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (Grant No. 31971356), and Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02).

Funding

The work was supported by National Natural Science Foundation of China (Grant No. 31971356), and Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Jiang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, MD., Zhou, ZW. & Zhu, ZJ. The Application of Ion Mobility-Mass Spectrometry in Untargeted Metabolomics: from Separation to Identification. J. Anal. Test. 4, 163–174 (2020). https://doi.org/10.1007/s41664-020-00133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00133-0

Keywords

Navigation