Skip to main content
Log in

Unconventional apparatuses and diagnostic techniques for studying negative ion plasmas in laboratory devices

  • Special Topics
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Negative ion plasmas at low temperatures are essential for a wide variety of plasma applications, including neutral beam injection heating in fusion devices, oxide thin layer deposition on substrates, and reactive ion etching. These plasmas are produced in an atmosphere of gases that attach to electrons, which have a propensity to absorb electrons and form negative ions. The formation of negative ions can occur via the dissociative attachment of gaseous molecules in bulk or from the interaction of energetic neutrals and positive ions with low-work-function surfaces. Due to their low mobility, the negative ions generally tend to remain confined inside bulk plasma by the electrostatic potential in the pre-sheath. As a result, the characteristic speed of positive ions at the sheath boundary is greatly affected. The sheath and the pre-sheath region are also responsible for the acceleration of surface-produced negative ions toward the bulk plasma. Sheaths containing negative ions also have significance in the diagnostic applications of plasma probes. For the production of negative ions in the bulk phase, the energy distribution of electrons needs to be suitably controlled. Therefore, the underlying state of the art is to create and characterize these plasmas systematically in laboratory plasmas. This paper provides a concise overview of the novel plasma sources and diagnostic techniques that our lab has created over the last 10 years to study negative ion plasmas. Furthermore, a basic analytical model was developed for a planar, one-dimensional plate to investigate the influence of negative ion emission from surfaces and how it affects sheaths and pre-sheaths when negative ions are present. The study offers a novel viewpoint on how these resources might be utilized to improve the development of reliable plasma and diagnostic systems that are beneficial for negative ion research. To highlight the significance of the aforementioned advancements, a concise summary of pertinent works has been incorporated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52

Similar content being viewed by others

Data availability

There are no data associated with this paper.

References

  • A. Aanesland, A. Meige, P. Chabert, Electric propulsion using ion–ion plasmas. J. Phys. Conf. Ser. 2009, 012009 (2009)

    Article  Google Scholar 

  • L.W. Alvarez, Energy doubling in DC accelerators. Rev. Sci. Instrum. 22(9), 705–706 (1951)

    Article  ADS  CAS  Google Scholar 

  • H. Amemiva, N. Yasuda, M. Endou, Negative ion-containing plasma in parallel-plate radiofrequency discharge in oxygen. Plasma Chem. Plasma Process. 14(3), 209–227 (1994)

    Article  Google Scholar 

  • H. Amemiya, B. Annaratone, J. Allen, The double sheath associated with electron emission into a plasma containing negative ions. J. Plasma Phys. 60(1), 81–93 (1998)

    Article  ADS  Google Scholar 

  • T. An, R.L. Merlino, N. D’Angelo, Lowerhybrid waves in a plasma with negative ions. Phys. Fluids B 5(6), 1917–1918 (1993)

    Article  ADS  CAS  Google Scholar 

  • A. Anders, Plasma and ion sources in large area coating: a review. Surf. Coat. Technol. 200(5–6), 1893–1906 (2005)

    Article  CAS  Google Scholar 

  • A. Anders, Tutorial: reactive high power impulse magnetron sputtering (r-hipims). J. Appl. Phys. 121(17), 171101 (2017)

    Article  ADS  Google Scholar 

  • S.D. Baalrud, B. Scheiner, B.T. Yee et al., Interaction of biased electrodes and plasmas: sheaths, double layers, and fireballs. Plasma Sources Sci. Technol. 29(5), 053001 (2020)

    Article  ADS  CAS  Google Scholar 

  • M. Bacal, Photodetachment diagnostic techniques for measuring negative ion densities and temperatures in plasmas. Rev. Sci. Instrum. 71(11), 3981–4006 (2000)

    Article  ADS  CAS  Google Scholar 

  • M. Bacal, Physics aspects of negative ion sources. Nucl. Fusion 46(6), S250 (2006)

    Article  ADS  CAS  Google Scholar 

  • M. Bacal, Negative hydrogen ion production in fusion dedicated ion sources. Chem. Phys. 398, 3–6 (2012)

    Article  CAS  Google Scholar 

  • M. Bacal, M. Wada, Negative hydrogen ion production mechanisms. Appl. Phys. Rev. 2(2), 021305 (2015)

    Article  ADS  Google Scholar 

  • M. Bacal, G. Hamilton, A. Bruneteau et al., Measurement of h-density in plasma by photodetachment. Rev. Sci. Instrum. 50(6), 719–721 (1979)

    Article  ADS  CAS  PubMed  Google Scholar 

  • M. Bacal, J. Bruneteau, P. Devynck, Method for extracting volume produced negative ions. Rev. Sci. Instrum. 59(10), 2152–2157 (1988)

    Article  ADS  CAS  Google Scholar 

  • E. Bäckström, D. Hanstorp, O.M. Hole et al., Storing kev negative ions for an hour: the lifetime of the metastable p 2 1/2 o level in s 32. Phys. Rev. Lett. 114(14), 143003 (2015)

    Article  ADS  PubMed  Google Scholar 

  • G. Bansal, A. Gahlaut, J. Soni et al., Negative ion beam extraction in robin. Fus. Eng. Des. 88(6–8), 778–782 (2013)

    Article  CAS  Google Scholar 

  • Y. Belchenko, Surface negative ion production in ion sources. Rev. Sci. Instrum. 64(6), 1385–1393 (1993)

    Article  ADS  CAS  Google Scholar 

  • Y.I. Belchenko, V.I. Davydenko, P. Deichuli et al., Studies of ion and neutral beam physics and technology at the budker institute of nuclear physics, sb ras. Phys. Usp. 61(6), 531 (2018)

    Article  ADS  CAS  Google Scholar 

  • W.H. Bennett, P.F. Darby, Negative atomic hydrogen ions. Phys. Rev. 49(1), 97 (1936)

    Article  ADS  CAS  Google Scholar 

  • M.P. Bhuva, S.K. Karkari, The role of apex angle of a cone-shaped hollow cathode on plasma parameters. IEEE Trans. Plasma Sci. 47(6), 2929–2936 (2019)

    Article  ADS  CAS  Google Scholar 

  • M. Bhuva, S. Karkari, S. Kumar, Characteristics of an elongated plasma column produced by magnetically coupled hollow cathode plasma source. Phys. Plasmas 25(3), 033509 (2018)

    Article  ADS  Google Scholar 

  • S. Binwal, J. Joshi, S. Karkari et al., Passive inference of collision frequency in magnetized capacitive argon discharge. Phys. Plasmas 25(3), 033506 (2018)

    Article  ADS  Google Scholar 

  • S. Binwal, Y. Patil, S. Karkari et al., Transverse magnetic field effects on spatial electron temperature distribution in a 13.56 mhz parallel plate capacitive discharge. Phys. Plasmas 27(3), 033506 (2020)

    Article  ADS  CAS  Google Scholar 

  • R.A.B.R.A. Bonham, Electron impact cross section data for carbon tetrafluoride. Jpn. J. Appl. Phys. 33(7S), 4157 (1994)

    Article  ADS  CAS  Google Scholar 

  • M. Bowes, P. Poolcharuansin, J. Bradley, Negative ion energy distributions in reactive hipims. J. Phys. D Appl. Phys. 46(4), 045204 (2012)

    Article  ADS  Google Scholar 

  • R.L.F. Boyd, J. Thompson, The operation of Langmuir probes in electro-negative plasmas. Proc. R. Soc. Lond. A 252(1268), 102–119 (1959)

    Article  ADS  Google Scholar 

  • J.W. Bradley, R. Dodd, S.D. You et al., Resonance hairpin and Langmuir probe-assisted laser photodetachment measurements of the negative ion density in a pulsed DC magnetron discharge. J. Vacuum J. Vacuum Sci. Technol. A Vacuum Surf. Films 29(3), 03105 (2011)

    Google Scholar 

  • N.S.J. Braithwaite, J.E. Allen, Boundaries and probes in electronegative plasmas. J. Phys. D Appl. Phys. 21(12), 1733 (1988)

    Article  ADS  Google Scholar 

  • J. Bredin, P. Chabert, A. Aanesland, Langmuir probe analysis in electronegative plasmas. Phys. Plasmas 21(12), 123502 (2014)

    Article  ADS  Google Scholar 

  • S. Briefi, U. Fantz, N. Team, Spectroscopic investigations of the ion source at batman upgrade. AIP Conf. Proc. 2018, 040005 (2018)

    Google Scholar 

  • N. Britun, T. Minea, S. Konstantinidis et al., Plasma diagnostics for understanding the plasma–surface interaction in hipims discharges: a review. J. Phys. D Appl. Phys. 47(22), 224001 (2014)

    Article  ADS  Google Scholar 

  • P. Chabert, T. Sheridan, R. Boswell et al., Electrostatic probe measurement of the negative ion fraction in an sf6 helicon discharge. Plasma Sources Sci. Technol. 8(4), 561 (1999)

    Article  ADS  CAS  Google Scholar 

  • J. Conway, N. Sirse, S. Karkari et al., Using the resonance hairpin probe and pulsed photodetachment technique as a diagnostic for negative ions in oxygen plasma. Plasma Sources Sci. Technol. 19(6), 065002 (2010)

    Article  ADS  Google Scholar 

  • G. Curley, L. Gatilova, S. Guilet et al., Surface loss rates of h and cl radicals in an inductively coupled plasma etcher derived from time-resolved electron density and optical emission measurements. J. Vacuum Sci. Technol. a. Vacuum Surfaces Films 28(2), 360–372 (2010)

    Article  ADS  CAS  Google Scholar 

  • G. Dimov, Use of hydrogen negative ions in particle accelerators. Rev. Sci. Instrum. 67(10), 3393–3404 (1996)

    Article  ADS  CAS  Google Scholar 

  • R. Dodd, S. You, P. Bryant et al., Negative ion density measurements in a reactive dc magnetron using the eclipse photodetachment method. Plasma Sources Sci. Technol. 19(1), 015021 (2010)

    Article  ADS  Google Scholar 

  • H. Doucet, Production of a quasi electron free plasma using electronic attachment. Phys. Lett. A 33(5), 283–284 (1970)

    Article  ADS  CAS  Google Scholar 

  • K. Emeleus, The effect of negative ions on the plasma–sheath boundary. Int. J. Electron. Theor. Exp. 38(2), 159–162 (1975)

    Article  CAS  Google Scholar 

  • D. Faircloth, S. Lawrie, An overview of negative hydrogen ion sources for accelerators. New J. Phys. 20(2), 025007 (2018)

    Article  ADS  Google Scholar 

  • U. Fantz, S. Briefi, A. Heiler et al., Negative hydrogen ion sources for fusion: From plasma generation to beam properties. Front. Phys. 9(709), 651 (2021)

    Google Scholar 

  • J. Fernández Palop, J. Ballesteros, V. Colomer et al., Sheath structure in a plane probe inmersed in an electronegative plasma. J. Appl. Phys. 77(7), 2937–2944 (1995)

    Article  ADS  Google Scholar 

  • R. Franklin, J. Snell, Modelling discharges in electronegative gases. J. Phys. D Appl. Phys. 32(17), 2190 (1999)

    Article  ADS  CAS  Google Scholar 

  • L. Friedland, C. Ciubotariu, M. Bacal, Dynamic plasma response in laser photodetachment experiments in hydrogen plasmas. Phys. Rev. E 49(5), 4353 (1994)

    Article  ADS  CAS  Google Scholar 

  • G. Fubiani, J. Boeuf, Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—insights from a three dimensional particle-in-cell monte carlo collisions model. Phys. Plasmas 20(11), 113511 (2013)

    Article  ADS  Google Scholar 

  • Y. Fujiwara, A. Kaimai, J.O. Hong et al., An oxygen negative ion source of a new concept using solid oxide electrolytes. J. Electrochem. Soc. 150(2), E117 (2003)

    Article  CAS  Google Scholar 

  • K.P. Giapis, G.S. Hwang, Pattern-dependent charging and the role of electron tunneling. Jpn. J. Appl. Phys. 37(4S), 2281 (1998)

    Article  ADS  CAS  Google Scholar 

  • G. Gogna, S. Karkari, Microwave resonances of a hairpin probe in a magnetized plasma. Appl. Phys. Lett. 96(15), 151503 (2010)

    Article  ADS  Google Scholar 

  • J. Gudmundsson, I. Kouznetsov, K. Patel et al., Electronegativity of low-pressure highdensity oxygen discharges. J. Phys. D Appl. Phys. 34(7), 1100 (2001)

    Article  ADS  CAS  Google Scholar 

  • F. Haas, J. Al-Kuzee, N.S.J. Braithwaite, Electron and ion sheath effects on a microwave “hairpin” probe. Appl. Phys. Lett. 87(20), 201503 (2005)

    Article  ADS  Google Scholar 

  • R.S. Hemsworth, T. Inoue, Positive and negative ion sources for magnetic fusion. IEEE Trans. Plasma Sci. 33(6), 1799–1813 (2005)

    Article  ADS  CAS  Google Scholar 

  • J. Hiskes, A. Karo, M. Gardner, Mechanism for negative-ion production in the surfaceplasma negative-hydrogen-ion source. J. Appl. Phys. 47(9), 3888–3896 (1976)

    Article  ADS  CAS  Google Scholar 

  • I. Hofmann, Review of accelerator driven heavy ion nuclear fusion. Matter Radiat Extrem 3(1), 1–11 (2018)

    Article  Google Scholar 

  • R. Ichiki, M. Shindo, S. Yoshimura et al., Ion acoustic waves in one-and two-negative ion species plasmas. Phys. Plasmas 8(10), 4275–4283 (2001)

    Article  ADS  CAS  Google Scholar 

  • T. Intrator, N. Hershkowitz, R. Stern, Beam–plasma interactions in a positive ion–negative ion plasma. Phys. Fluids 26(7), 1942–1948 (1983)

    Article  ADS  CAS  Google Scholar 

  • N. Ito, N. Oka, Y. Sato et al., Effects of energetic ion bombardment on structural and electrical properties of al-doped ZNO films deposited by RF-superimposed dc magnetron sputtering. Jpn. J. Appl. Phys. 49(7R), 071103 (2010)

    Article  ADS  Google Scholar 

  • S.Y. Jiang, A. Ma, S. Ramachandran, Negative air ions and their effects on human health and air quality improvement. Int. J. Mol. Sci. 19(10), 2966 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • J. Joshi, S. Binwal, S. Karkari et al., Electron series resonance in a magnetized 13.56 mhz symmetric capacitive coupled discharge. J. Appl. Phys. 123(11), 113301 (2018)

    Article  ADS  Google Scholar 

  • J.K. Joshi, S.K. Karkari, S. Kumar, Effect of magnetization on impedance characteristics of a capacitive discharge using push–pull driven cylindrical electrodes. IEEE Trans. Plasma Sci. 47(12), 5291–5298 (2019)

    Article  ADS  CAS  Google Scholar 

  • I. Kaganovich, Negative ion density fronts. Phys. Plasmas 8(5), 2540–2548 (2001)

    Article  ADS  CAS  Google Scholar 

  • Kaganovich ID, Franklin RN, Demidov VI (2010) Principles of transport in multicomponent plasmas. In: Introduction to complex plasmas. Springer, London, pp 17–39

  • S. Kajita, S. Kado, S. Tanaka, Eclipse laser photodetachment method for avoiding probe surface ablation in negative ion measurement. Plasma Sources Sci. Technol. 14(3), 566 (2005)

    Article  ADS  CAS  Google Scholar 

  • S. Karkari, A. Ellingboe, Effect of radiofrequency power levels on electron density in a confined two-frequency capacitively-coupled plasma processing tool. Appl. Phys. Lett. 88(10), 101501 (2006)

    Article  ADS  Google Scholar 

  • S. Karkari, C. Gaman, A. Ellingboe et al., A floating hairpin resonance probe technique for measuring time-resolved electron density in pulse discharge. Meas. Sci. Technol. 18(8), 2649 (2007)

    Article  ADS  CAS  Google Scholar 

  • S. Karkari, A. Ellingboe, C. Gaman, Direct measurement of spatial electron density oscillations in a dual frequency capacitive plasma. Appl. Phys. Lett. 93(7), 071501 (2008)

    Article  ADS  Google Scholar 

  • M. Kikuchi, K. Lackner, M.Q. Tran, Fusion physics (Springer, London, 2012)

    Google Scholar 

  • H. Kikuchi, K. Takahashi, S. Mukaigawa et al., Silicon wafer etching rate characteristics with burst width using 150 khz band high-power burst inductively coupled plasma. Micromachines 12(6), 599 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • V. Kolobov, D. Economou, Ion–ion plasmas and double layer formation in weakly collisional electronegative discharges. Appl. Phys. Lett. 72(6), 656–658 (1998)

    Article  ADS  CAS  Google Scholar 

  • A.P. Krueger, E.J. Reed, Biological impact of small air ions: despite a history of contention, there is evidence that small air ions can affect life processes. Science 193(4259), 1209–1213 (1976)

    Article  ADS  CAS  PubMed  Google Scholar 

  • M.J. Kushner, Modeling electronegative processes in plasmas (Springer, London, 2003)

    Google Scholar 

  • Kwan J (2008) Perspective on the role of negative ions and ion–ion plasmas in heavy ion fusion science, magnetic fusion energy, and related fields

  • M. Lampe, W.M. Manheimer, R.F. Fernsler et al., The physical and mathematical basis of stratification in electronegative plasmas. Plasma Sources Sci. Technol. 13(1), 15 (2003)

    Article  ADS  Google Scholar 

  • B.S. Lee, M. Seidl, Surface production of hions by hyperthermal hydrogen atoms. Appl. Phys. Lett. 61(24), 2857–2859 (1992)

    Article  ADS  CAS  Google Scholar 

  • K. Leung, K. Ehlers, Self-extraction negative ion source. Rev. Sci. Instrum. 53(6), 803–809 (1982)

    Article  ADS  CAS  Google Scholar 

  • A. Lichtenberg, I. Kouznetsov, Y. Lee et al., Modelling plasma discharges at high electronegativity. Plasma Sources Sci. Technol. 6(3), 437 (1997)

    Article  ADS  CAS  Google Scholar 

  • L. Lidsky, S. Rothleder, D. Rose et al., Highly ionized hollow cathode discharge. J. Appl. Phys. 33(8), 2490–2497 (1962)

    Article  ADS  Google Scholar 

  • M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing (Wiley, London, 2005)

    Book  Google Scholar 

  • S. Mahieu, W. Leroy, K. Van Aeken et al., Modeling the flux of high energy negative ions during reactive magnetron sputtering. J. Appl. Phys. 106(9), 093302 (2009)

    Article  ADS  Google Scholar 

  • R. McAdams, M. Bacal, The negative ion flux across a double sheath at the formation of a virtual cathode. Plasma Sources Sci. Technol. 19(4), 042001 (2010)

    Article  ADS  Google Scholar 

  • R. McAdams, A. Holmes, D. King et al., Transport of negative ions across a double sheath with a virtual cathode. Plasma Sources Sci. Technol. 20(3), 035023 (2011)

    Article  ADS  Google Scholar 

  • R.L. Merlino, J.J. Loomis, Double layers in a plasma with negative ions. Phys. Fluids B 2(12), 2865–2867 (1990)

    Article  ADS  Google Scholar 

  • Mujawar MA (2013) Studies on constricted hollow anode plasma source for negative ion production. PhD thesis, Dublin City University

  • M. Mujawar, S. Karkari, M. Turner, Properties of a differentially pumped constricted hollow anode plasma source. Plasma Sources Sci. Technol. 20(1), 015024 (2011)

    Article  ADS  Google Scholar 

  • J. Musil, J. Leˇstina, J. Vlˇcek et al., Pulsed dc magnetron discharge for high-rate sputtering of thin films. J. Vac. Sci. Technol. a: Vac. Surf. Films 19(2), 420–424 (2001)

    Article  ADS  CAS  Google Scholar 

  • A. Nikitin, F. El Balghiti, M. Bacal, Comparison of negative ion density measurements by probes and by photodetachment. Plasma Sources Sci. Technol. 5(1), 37 (1996)

    Article  ADS  CAS  Google Scholar 

  • W. Oohara, R. Hatakeyama, Pair-ion plasma generation using fullerenes. Phys. Rev. Lett. 91(20), 205005 (2003)

    Article  ADS  PubMed  Google Scholar 

  • W. Oohara, R. Hatakeyama, Basic studies of the generation and collective motion of pair-ion plasmas. Phys. Plasmas 14(5), 055704 (2007)

    Article  ADS  Google Scholar 

  • N. Oudini, Eclipse laser photo-detachment: Does the blocking wire distort the collected laser photo-detachment signal? Plasma Sources Sci. Technol. 28(6), 065016 (2019)

    Article  ADS  CAS  Google Scholar 

  • N. Oudini, F. Taccogna, A. Bendib et al., Numerical simulations used for a validity check on the laser induced photo-detachment diagnostic method in electronegative plasmas. Phys. Plasmas 21(6), 063515 (2014)

    Article  ADS  Google Scholar 

  • N. Oudini, N. Sirse, R. Benallal et al., Numerical experiment to estimate the validity of negative ion diagnostic using photo-detachment combined with Langmuir probing. Phys. Plasmas 22(7), 073509 (2015)

    Article  ADS  Google Scholar 

  • N. Oudini, A. Bendib, R. Agnello et al., Laser photo-detachment combined with Langmuir probe in magnetized electronegative plasma: how the probe size affects the plasma dynamic? Plasma Sources Sci. Technol. 30(11), 115005 (2021)

    Article  ADS  CAS  Google Scholar 

  • Pandey AK (2020) Non-neutral sheath region around surfaces in low temperature plasmas containing negative ions. PhD thesis, Homi Bhabha National Institute, available at http://www.hbni.ac.in/phdthesis/phys/PHYS06201404002.pdf

  • A. Pandey, S. Karkari, Characteristics of floating potential of a probe in electronegative plasma. Phys. Plasmas 24(1), 013507 (2017)

    Article  ADS  Google Scholar 

  • A.K. Pandey, S.K. Karkari, Positive ion speed at the plasma–sheath boundary of a negative ion-emitting electrode. Contrib. Plasma Phys. 60(3), e201900116 (2020)

    Article  ADS  CAS  Google Scholar 

  • A. Pandey, J.K. Joshi, S. Karkari, Inferring plasma parameters from the sheath characteristics of a dc biased hairpin probe. Plasma Sources Sci. Technol. 29(1), 015009 (2020)

    Article  ADS  CAS  Google Scholar 

  • K. Pandya, A. Gahlaut, R.K. Yadav et al., First results from negative ion beam extraction in robin in surface mode. AIP Conf. Proc. 2017, 030009 (2017)

    Article  Google Scholar 

  • R. Piejak, V. Godyak, R. Garner et al., The hairpin resonator: a plasma density measuring technique revisited. J. Appl. Phys. 95(7), 3785–3791 (2004)

    Article  ADS  CAS  Google Scholar 

  • N. Plihon, C. Corr, P. Chabert, Double layer formation in the expanding region of an inductively coupled electronegative plasma. Appl. Phys. Lett. 86(9), 091501 (2005)

    Article  ADS  Google Scholar 

  • N. Plihon, P. Chabert, C. Corr, Experimental investigation of double layers in expanding plasmas. Phys. Plasmas 14(1), 013506 (2007)

    Article  ADS  Google Scholar 

  • K. Prelec, T. Sluyters, Formation of negative hydrogen ions in direct extraction sources. Rev. Sci. Instrum. 44(10), 1451–1463 (1973)

    Article  ADS  CAS  Google Scholar 

  • M. Seidl, A. Pargellis, Production of negative hydrogen ions by sputtering adsorbed hydrogen from a cesiated molybdenum surface. Phys. Rev. B 26(1), 1 (1982)

    Article  ADS  CAS  Google Scholar 

  • S. Sharma, I.D. Kaganovich, A.V. Khrabrov et al., Spatial symmetry breaking in singlefrequency ccp discharge with transverse magnetic field. Phys. Plasmas 25(8), 080704 (2018)

    Article  ADS  Google Scholar 

  • D. Sheehan, N. Rynn, Negative-ion plasma sources. Rev. Sci. Instrum. 59(8), 1369–1375 (1988)

    Article  ADS  CAS  Google Scholar 

  • T. Sheridan, P. Chabert, R. Boswell, Positive ion flux from a low-pressure electronegative discharge. Plasma Sources Sci. Technol. 8(3), 457 (1999)

    Article  ADS  CAS  Google Scholar 

  • Singh P, Karkari SK (2021) Addressing the anomalies in determining negative ion parameters using electrostatic probes. Preprint arXiv:2109.09419

  • Sirse N (2013) Resonance hairpin probe for electronegative plasma diagnostics. PhD thesis, Dublin City University

  • N. Sirse, S. Karkari, M. Mujawar et al., The temporal evolution in plasma potential during laser photo-detachment used to diagnose electronegative plasma. Plasma Sources Sci. Technol. 20(5), 055003 (2011)

    Article  ADS  Google Scholar 

  • N. Sirse, S. Karkari, M. Turner, Probing negative ion density and temperature using a resonance hairpin probe. Plasma Sources Sci. Technol. 24(2), 022001 (2015)

    Article  ADS  Google Scholar 

  • N. Sirse, N. Oudini, A. Bendib et al., Measurement of electronegativity at different laser wavelengths: accuracy of Langmuir probe assisted laser photo-detachment. Plasma Sources Sci. Technol. 25(4), 04LT01 (2016)

    Article  Google Scholar 

  • N. Sirse, T. Tsutsumi, M. Sekine et al., Measurement of f-, o- and densities in 60 and 100 mhz asymmetric capacitively coupled plasma discharge produced in an ar/o2/c4f8 gas mixture. J. Phys. D Appl. Phys. 50(33), 33505 (2017)

    Article  Google Scholar 

  • N. Sirse, T. Tsutsumi, M. Sekine et al., Electron and negative ion dynamics in a pulsed 100 mhz capacitive discharge produced in an o2 and ar/o2/c4f8 gas mixture. Plasma Sources Sci. Technol. 29(3), 035025 (2020)

    Article  ADS  CAS  Google Scholar 

  • B. Song, N. D’Angelo, R.L. Merlino, Ionacoustic waves in a plasma with negative ions. Phys. Fluids B 3(2), 284–287 (1991)

    Article  ADS  CAS  Google Scholar 

  • E. Speth, H. Falter, P. Franzen et al., Overview of the RF source development programme at ipp garching. Nucl. Fus. 46(6), S220 (2006)

    Article  CAS  Google Scholar 

  • E. Stamate, K. Ohe, Determination of negative-ion and electron parameters in an ar/sf 6 plasma. J. Appl. Phys. 84(5), 2450–2458 (1998)

    Article  ADS  CAS  Google Scholar 

  • R. Stenzel, Microwave resonator probe for localized density measurements in weakly magnetized plasmas. Rev. Sci. Instrum. 47(5), 603–607 (1976)

    Article  ADS  Google Scholar 

  • R. Stenzel, C. Ionita, R. Schrittwieser, Dynamics of fireballs. Plasma Sources Sci. Technol. 17(3), 035006 (2008)

    Article  ADS  Google Scholar 

  • E. Stoffels, W. Stoffels, G. Kroesen, Plasma chemistry and surface processes of negative ions. Plasma Sources Sci. Technol. 10(2), 311 (2001)

    Article  ADS  CAS  Google Scholar 

  • F. Taccogna, P. Minelli, S. Longo et al., Modeling of a negative ion source. III. twodimensional structure of the extraction region. Phys. Plasmas 17(6), 063502 (2010)

    Article  ADS  Google Scholar 

  • T. Takeuchi, S. Iizuka, N. Sato, Ion acoustic shocks formed in a collisionless plasma with negative ions. Phys. Rev. Lett. 80(1), 77 (1998)

    Article  ADS  CAS  Google Scholar 

  • A. Tanga, M. Bandyopadhyay, P. McNeely, Measurement of ion flow in a negative ion source using a mach probe. Appl. Phys. Lett. 84(2), 182–184 (2004)

    Article  ADS  CAS  Google Scholar 

  • M. Turner, Pressure heating of electrons in capacitively coupled RF discharges. Phys. Rev. Lett. 75(7), 1312 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  • M. Turner, D. Hutchinson, R. Doyle et al., Heating mode transition induced by a magnetic field in a capacitive RF discharge. Phys. Rev. Lett. 76(12), 2069 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  • D. Vender, W. Stoffels, E. Stoffels et al., Charged-species profiles in electronegative radio-frequency plasmas. Phys. Rev. E 51(3), 2436 (1995)

    Article  ADS  CAS  Google Scholar 

  • H. Verbeek, W. Eckstein, R. Bhattacharya, Negative hydrogen ion formation by backscattering from solid surfaces. Surf. Sci. 95(23), 380–390 (1980)

    Article  ADS  CAS  Google Scholar 

  • J. Vlček, A. Pajdarová, J. Musil, Pulsed dc magnetron discharges and their utilization in plasma surface engineering. Contrib. Plasma Phys. 44(5–6), 426–436 (2004)

    Article  ADS  Google Scholar 

  • S. Walton, R. Champion, Y. Wang, Negative ion emission from a stainless steel surface due to positive ion collisions. J. Appl. Phys. 84(3), 1706–1707 (1998)

    Article  ADS  CAS  Google Scholar 

  • T. Welzel, T. Dunger, B. Liebig et al., Determination of energy modulations of negative oxygen ions during pulsed magnetron sputtering of magnesium oxide. Plasma Sources Sci. Technol. 20(3), 035020 (2011)

    Article  ADS  Google Scholar 

  • L. Wickens, J. Allen, Free expansion of a plasma with two electron temperatures. J. Plasma Phys. 22(1), 167–185 (1979)

    Article  ADS  Google Scholar 

  • S.A. Wissel, A. Zwicker, J. Ross et al., The use of dc glow discharges as undergraduate educational tools. Am. J. Phys. 81(9), 663–669 (2013)

    Article  ADS  CAS  Google Scholar 

  • A. Wong, D. Mamas, D. Arnush, Negative ion plasmas. Phys. Fluids 18(11), 1489–1493 (1975)

    Article  ADS  CAS  Google Scholar 

  • B.P. Wood, M. Lieberman, A. Lichtenberg, Stochastic electron heating in a capacitive rf discharge with non-maxwellian and time-varying distributions. IEEE Trans. Plasma Sci. 23(1), 89–96 (1995)

    Article  ADS  Google Scholar 

  • P. Wurz, R. Schletti, M. Aellig, Hydrogen and oxygen negative ion production by surface ionization using diamond surfaces. Surf. Sci. 373(1), 56–66 (1997)

    Article  ADS  CAS  Google Scholar 

  • S. You, S. Kim, H.Y. Chang, Low energy electron cooling induced by a magnetic field in high pressure capacitive radio frequency discharges. Appl. Phys. Lett. 85(21), 4872–4874 (2004)

    Article  ADS  CAS  Google Scholar 

  • S. You, G. Park, J. Kwon et al., Evolution of electron temperature in low pressure magnetized capacitive plasma. Appl. Phys. Lett. 96(10), 101504 (2010)

    Article  ADS  Google Scholar 

  • S. You, T. Hai, M. Park et al., Role of transverse magnetic field in the capacitive discharge. Thin Solid Films 519(20), 6981–6989 (2011)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

To begin with, I would like to express my gratitude to Professors Kikuchi, Abhijeet Sen, and R. Ganesh for giving me the chance to present the work at the 4th Asia-Pacific Conference in Plasma Physics. Sincere thanks to Dr. Avnish Kumar Pandey for his excellent proofreading and assistance with the article’s formulation. The materials of the paper about their doctoral works were provided to me by Dr. Nishant Sirse, Dr. Avnish Pandey, and Mr. Pawandeep Singh. I am grateful to Ms. Yashashri Patil and Dr. Nageswara Rao Epuru for helping to set up the pulsed photo-detachment studies at IPR. Pawandeep Singh, Swati, Satadal Das, Jay Joshi, Montu P. Bhuva, Shikha Binwal, Mubarak Mujawar, and G. S. Gogna, my Ph.D. students, have made contributions to the development of plasma sources and hairpin probe diagnostics. I would like to express my profound gratitude for the many intellectual exchanges and assistance I received from Dr. Paul Swift, Dr. Jim Conway, Dr. Bert Ellingboe, and Prof. Miles Turner while conducting research at Dublin City University in Ireland. My sincere gratitude is extended to our current director, Dr. Shashank Chaturvedi, for continuing to support this programme, as well as to Prof. P. K. Kaw, the former director of IPR, for providing me with the chance to start the experimental research on negative ions at IPR. Finally, I sincerely thank Prof. P.I. John for being my Ph.D. supervisor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Kumar Karkari.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkari, S.K. Unconventional apparatuses and diagnostic techniques for studying negative ion plasmas in laboratory devices. Rev. Mod. Plasma Phys. 8, 8 (2024). https://doi.org/10.1007/s41614-024-00146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-024-00146-7

Keywords

Navigation