Skip to main content
Log in

Generation, measurement, and modeling of strong magnetic fields generated by laser-driven micro coils

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Strong magnetic fields play an important role in high-energy-density plasma. Several approaches have been investigated within a decade to access the strong magnetic field over 100 T using high-power or high-intensity lasers. A laser-driven coil, one of the approaches, can generate a strong magnetic field over 100 T and has been applied to a lot of high-energy-density-plasma experiments. However, the mechanism of the laser-driven coil is still not fully understood and not controllable because of the lack of experimental data. In this review, we briefly introduce several approaches to generate a strong magnetic field by using high-power or high-intensity laser pulses such as spontaneous magnetic field, flux compression, laser-driven micro coils, and their applications to high-energy-density-plasma experiments. Measurement methods of strong magnetic fields are also introduced: pick-up coil, optical polarization probe, Zeeman spectroscopy, and proton radiography. In particular, we review recent progress and analysis methods of proton radiography which is often used to measure the magnetic field generated by laser-driven micro coils. Further, we discuss the validity and predictability of previously proposed models of laser-driven micro coils, and provide small corrections to the models. In the near future, these advances in the measurement techniques and the modeling of the laser-driven coil may promote the understanding of the strong field generation, not only by the laser-driven coil but also by proposed or new approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • B. Albertazzi, J. Béard, A. Ciardi et al., Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields. Rev. Sci. Instrum. 84, 043505 (2013)

    ADS  Google Scholar 

  • B. Albertazzi, A. Ciardi, M. Nakatsutsumi et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science 346(6207), 325–328 (2014)

    ADS  Google Scholar 

  • S. Ali, J.R. Davies, J.T. Mendonca, Inverse faraday effect with linearly polarized laser pulses. Phys. Rev. Lett. 105, 035001 (2010)

    ADS  Google Scholar 

  • L. Allen, M.W. Beijersbergen, R.J. Spreeuw et al., Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 11 (1992)

    Google Scholar 

  • R.A.B. Alraddadi, A.P.L. Robinson, J. Pasley et al., Enhancing relativistic electron beam propagation through the use of graded resistivity guides. Phys. Plasmas 25, 023104 (2018)

    ADS  Google Scholar 

  • R.A.B. Alraddadi, A.P.L. Robinson, N.C. Woolsey, Improved fast electron transport through the use of foam guides Improved fast electron transport through the use of foam guides. Phys. Plasmas 27, 092701 (2020)

    ADS  Google Scholar 

  • A. Arefiev, T. Toncian, G. Fiksel, Enhanced proton acceleration in an applied longitudinal magnetic field. New J. Phys. 18, 105011 (2016)

    ADS  Google Scholar 

  • C. Arran, C.P. Ridgers, N.C. Woolsey, Proton radiography in background magnetic fields. Matter Radiat. Extremes 6, 046904 (2021)

    Google Scholar 

  • A.D. Ash, Experimental astrophysics with magnetised laser-produced plasma. PhD thesis, University of York (2005)

  • O. Attia, R. Teyssier, H. Katz et al., Cosmological magnetogenesis: the Biermann battery during the Epoch of reionization. Mon. Not. R. Astron. Soc. 504(2), 2346–2359 (2021)

    ADS  Google Scholar 

  • S. Atzeni, J. Meyer-Ter-Vehn, Chap 7: Thermal waves and ablative drive, in The Physics of Inertial Fusion, ed. by J. Birman, S.F. Edwards, R. Fried, M. Rees, D. Sherrington, G. Veneziano (Oxford University Press Inc., Oxford, 2011), p. 225

    Google Scholar 

  • M. Bailly-Grandvaux, J.J. Santos, C. Bellei et al., Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields. Nat. Commun. 9, 102 (2018)

    ADS  Google Scholar 

  • J.T. Banasek, J.T. Engelbrecht, S.A. Pikuz et al., Measuring 10–20 T magnetic fields in single wire explosions using Zeeman splitting. Rev. Sci. Instrum. 87, 103506 (2016a)

    ADS  Google Scholar 

  • J.T. Banasek, J.T. Engelbrecht, S.A. Pikuz et al., Measuring 20–100 T B-fields using Zeeman splitting of sodium emission lines on a 500 kA pulsed power machine. Rev. Sci. Instrum. 87, 11D407 (2016b)

    Google Scholar 

  • A.R. Bell, J.R. Davies, S. Guerin, Magnetic field in short-pulse high-intensity laser-solid experiments. Phys. Rev. E 58, 2 (1998)

    Google Scholar 

  • L. Biermann, A. Schlüter, Cosmic radiation and cosmic magnetic fields. II. Origin of cosmic magnetic fields. Phys. Rev. 82, 6 (1951)

    MathSciNet  MATH  Google Scholar 

  • P. Bradford, M.P. Read, M. Ehret et al., Proton deflectometry of a capacitor coil target along two axes. High Power Laser Sci. Eng. 8, e11 (2020)

    Google Scholar 

  • A.V. Brantov, P. Korneev, V.Y. Bychenkov, Magnetic field generation from a coil-shaped foil by a laser-triggered hot-electron current. Laser Phys. Lett. 16, 066006 (2019)

    ADS  Google Scholar 

  • T. Byvank, J.T. Banasek, W.M. Potter et al., Applied axial magnetic field effects on laboratory plasma jets: density hollowing, field compression, and azimuthal rotation. Phys. Plasmas 24, 122701 (2017)

    ADS  Google Scholar 

  • H.B. Cai, S.P. Zhu, X.T. He, Effects of the imposed magnetic field on the production and transport of relativistic electron beams. Phys. Plasmas 20, 072701 (2013)

    ADS  Google Scholar 

  • P.T. Campbell, C.A. Walsh, B.K. Russell et al., Measuring magnetic flux suppression in high-power laser-plasma interactions. Phys. Plasmas 29, 012701 (2022)

    ADS  Google Scholar 

  • G. Chatterjee, P.K. Singh, S. Ahmed et al., Macroscopic transport of mega-ampere electron currents in aligned carbon-nanotube arrays. Phys. Rev. Lett. 108, 235005 (2012)

    ADS  Google Scholar 

  • N.F. Chen, M.F. Kasim, L. Ceurvorst et al., Machine learning applied to proton radiography of high-energy-density plasmas. Phys. Rev. E 95, 043305 (2017)

    ADS  Google Scholar 

  • A. Chien, L. Gao, K. Hill et al., Pulse width dependence of magnetic field generation using laser-powered capacitor coils Pulse width dependence of magnetic field generation using laser-powered capacitor coils. Phys. Plasmas 28, 052105 (2021)

    ADS  Google Scholar 

  • O. Chubar, P. Elleaume, J. Chavanne, A three-dimensional magnetostatics computer code for insertion devices. J. Synchrotron Radiat. 5(3), 481–484 (1998)

    Google Scholar 

  • G.A.P. Cirrone, A. Tramontana, G. Candiano, On the design of a robust kiloTesla spiral magnet. J. Instrum. 13, P05033 (2018)

    Google Scholar 

  • C. Courtois, A.D. Ash, D.M. Chambers et al., Creation of a uniform high magnetic-field strength environment for laser-driven experiments. J. Appl. Phys. 98, 054913 (2005)

    ADS  Google Scholar 

  • R.S. Craxton, K.S. Anderson, T.R. Boehly et al., Direct-drive inertial confinement fusion: a review. Phys. Plasmas 22, 110501 (2015)

    ADS  Google Scholar 

  • S. Das, S.S. Mullick, P.N. Suganthan, Recent advances in differential evolution—an updated survey. Swarm Evolut. Comput. 27, 1–30 (2016)

    Google Scholar 

  • G. Davara, L. Gregorian, E. Kroupp et al., Spectroscopic determination of the magnetic-field distribution in an imploding plasma. Phys. Plasmas 5(4), 1068–1075 (1998)

    ADS  Google Scholar 

  • J.R. Davies, A.R. Bell, M.G. Haines et al., Short-pulse high-intensity laser-generated fast electron transport into thick solid targets. Phys. Rev. E 56(6), 7193–7203 (1997)

    ADS  Google Scholar 

  • J.R. Davies, D.H. Barnak, R. Betti et al., Laser-driven magnetized liner inertial fusion. Phys. Plasmas 24, 062701 (2017)

    ADS  Google Scholar 

  • J. Deschamps, M. Fitaire, M. Lagoutte, Inverse Faraday effect in a plasma. Phys. Rev. Lett. 25(19), 1330–1332 (1970)

    ADS  Google Scholar 

  • L. Dong, J. Ran, Z. Mao, Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening. Appl. Phys. Lett. 86, 161501 (2005)

    ADS  Google Scholar 

  • B. Du, H.B. Cai, W.S. Zhang et al., Separating the contributions of electric and magnetic fields in deflecting the probes in proton radiography with multiple proton energies. Matter Radiat. Extremes 6, 035903 (2021)

    Google Scholar 

  • M. Ehret, Y. Kochetkov, Y. Abe et al., Kilotesla plasmoid formation by a trapped relativistic laser beam. Phys. Rev. E 106, 045211 (2022)

    ADS  Google Scholar 

  • K. Estabrook, W.L. Kruer, Properties of resonantly heated electron distributions. Phys. Rev. Lett. 40(1), 42–45 (1978)

    ADS  Google Scholar 

  • F.S. Felber, M.M. Malley, M.A. Palmer et al., Compression of ultrahigh magnetic fields in a gas-puff Z pinch. Phys. Fluids 31, 2053 (1988)

    ADS  Google Scholar 

  • G. Fiksel, A. Agliata, D. Barnak et al., Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility. Rev. Sci. Instrum. 86, 016105 (2015)

    ADS  Google Scholar 

  • G. Fiksel, W. Fox, L. Gao et al., A simple model for estimating a magnetic field in laser-driven coils. Appl. Phys. Lett. 109, 134103 (2016)

    ADS  Google Scholar 

  • D. Forslund, J. Kindel, K. Lee, Theory of hot-electron spectra at high laser intensity. Phys. Rev. Lett. 39(5), 284–287 (1977)

    ADS  Google Scholar 

  • W. Fox, A. Bhattacharjee, K. Germaschewski, Fast magnetic reconnection in laser-produced plasma bubbles. Phys. Rev. Lett. 106, 215003 (2011)

    ADS  Google Scholar 

  • W. Fox, A. Bhattacharjee, K. Germaschewski, Magnetic reconnection in high-energy-density laser-produced plasmas. Phys. Plasmas 19, 056309 (2012)

    ADS  Google Scholar 

  • D.H. Froula, B. Yaakobi, S.X. Hu et al., Saturation of the two-plasmon decay instability in long-scale-length plasmas relevant to direct-drive inertial confinement fusion. Phys. Rev. Lett. 108, 165003 (2012)

    ADS  Google Scholar 

  • S. Fujioka, Z. Zhang, K. Ishihara et al., Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep. 3, 1170 (2013)

    Google Scholar 

  • L. Gao, H. Ji, G. Fiksel et al., Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current. Phys. Plasmas 23, 043106 (2016)

    ADS  Google Scholar 

  • M.A. Gigosos, Stark broadening models for plasma diagnostics. J. Phys. D: Appl. Phys. 47, 343001 (2014)

    ADS  Google Scholar 

  • S. Göde, C. Rödel, K. Zeil et al., Relativistic electron streaming instabilities modulate proton beams accelerated in laser-plasma interactions. Phys. Rev. Lett. 118, 194801 (2017)

    ADS  Google Scholar 

  • M.R. Gomez, S.B. Hansen, K.J. Peterson et al., Magnetic field measurements via visible spectroscopy on the Z machine. Rev. Sci. Instrum. 85, 11E609 (2014)

    Google Scholar 

  • A. Gopal, S. Minardi, M. Burza et al., MegaGauss magnetic field generation by ultra-short pulses at relativistic intensities. Plasma Phys. Control. Fusion 55, 035002 (2013)

    ADS  Google Scholar 

  • O.V. Gotchev, P.Y. Chang, J.P. Knauer et al., Laser-driven magnetic-flux compression in high-energy-density plasmas. Phys. Rev. Lett. 103, 215004 (2009)

    ADS  Google Scholar 

  • C. Goyon, B.B. Pollock, D.P. Turnbull et al., Ultrafast probing of magnetic field growth inside a laser-driven solenoid. Phys. Rev. E 95, 033208 (2017)

    ADS  Google Scholar 

  • A. Grassi, M. Grech, F. Amiranoff et al., Electron Weibel instability in relativistic counterstreaming plasmas with flow-aligned external magnetic fields. Phys. Rev. E 95, 023203 (2017)

    ADS  MathSciNet  Google Scholar 

  • J.S. Green, V.M. Ovchinnikov, R.G. Evans et al., Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett. 100, 015003 (2008)

    ADS  Google Scholar 

  • Y.J. Gu, M. Murakami, Magnetic field amplification driven by the gyro motion of charged particles. Sci. Rep. 11, 23592 (2021)

    ADS  Google Scholar 

  • S.S. Harilal, C.V. Bindhu, R.C. Issac et al., Electron density and temperature measurements in a laser produced carbon plasma. J. Appl. Phys. 82(5), 2140–2146 (1997)

    ADS  Google Scholar 

  • K. Higuchi, D.B. Hamal, M. Higuchi, Nonperturbative description of the butterfly diagram of energy spectra for materials immersed in a magnetic field. Phys. Rev. B 97, 195135 (2018)

    ADS  Google Scholar 

  • D.W. Hill, R.J. Kingham, Enhancement of pressure perturbations in ablation due to kinetic magnetized transport effects under direct-drive inertial confinement fusion relevant conditions. Phys. Rev. E 98, 021201 (2018)

    ADS  Google Scholar 

  • Y. Horovitz, S. Eliezer, A. Ludmirsky et al., Measurements of inverse faraday effect and absorption of circularly polarized laser light in plasmas. Phys. Rev. Lett. 78(9), 1707–1710 (1997)

    ADS  Google Scholar 

  • P. Hu, G.Y. Hu, Y.L. Wang et al., Pulsed magnetic field device for laser plasma experiments at Shenguang-II laser facility. Rev. Sci. Instrum. 91, 014703 (2020)

    ADS  Google Scholar 

  • C.M. Huntington, F. Fiuza, J.S. Ross et al., Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nat. Phys. 11(2), 173–176 (2015)

    Google Scholar 

  • N. Iwata, S. Kojima, Y. Sentoku et al., Plasma density limits for hole boring by intense laser pulses. Nat. Commun. 9(1), 2–6 (2018)

    Google Scholar 

  • Z. Jiang, J. Wu, D. Zhang et al., Measurement of magnetic field distribution produced by high-current pulse using Zeeman splitting of Na emission distributed by laser ablation. Rev. Sci. Instrum. 92, 093502 (2021)

    ADS  Google Scholar 

  • T. Johzaki, H. Nagatomo, A. Sunahara et al., Integrated simulation of magnetic-field-assist fast ignition laser fusion. Plasma Phys. Control. Fusion 59, 014045 (2017)

    ADS  Google Scholar 

  • T. Johzaki, K. Yoshitake, T. Endo et al., Dependence of resistivity gradient guiding of laser-driven relativistic electron beams on laser intensity and duration. Phys. Plasmas 29, 112707 (2022)

    ADS  Google Scholar 

  • S. Kar, A.P.L. Robinson, D.C. Carroll et al., Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields. Phys. Rev. Lett. 102, 055001 (2009)

    ADS  Google Scholar 

  • M.F. Kasim, L. Ceurvorst, N. Ratan et al., Quantitative shadowgraphy and proton radiography for large intensity modulations. Phys. Rev. E 95, 023306 (2017)

    ADS  Google Scholar 

  • R.L. Keck, L.M. Goldman, M.C. Richardson et al., Observations of high-energy electron distributions in laser plasmas. Phys. Fluids 27, 2762 (1984)

    ADS  Google Scholar 

  • M. Khan, C. Das, B. Chakraborty et al., Self-generated magnetic field and Faraday rotation in a laser-produced plasma. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 58(1), 925–930 (1998)

    Google Scholar 

  • P.F. Knapp, P.F. Schmit, S.B. Hansen et al., Effects of magnetization on fusion product trapping and secondary neutron spectra. Phys. Plasmas 22, 056312 (2015)

    ADS  Google Scholar 

  • J.P. Knauer, O.V. Gotchev, P.Y. Chang et al., Compressing magnetic fields with high-energy lasers. Phys. Plasmas 17, 056318 (2010)

    ADS  Google Scholar 

  • I.V. Kochetkov, N.D. Bukharskii, M. Ehret et al., Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses. Sci. Rep. 12, 13734 (2022)

    ADS  Google Scholar 

  • S. Kojima, M. Hata, N. Iwata et al., Electromagnetic field growth triggering super-ponderomotive electron acceleration during multi-picosecond laser-plasma interaction. Commun. Phys. 2, 99 (2019)

    Google Scholar 

  • P. Korneev, E. D’Humières, V. Tikhonchuk, Gigagauss-scale quasistatic magnetic field generation in a snail-shaped target. Phys. Rev. E 91, 043107 (2015)

    ADS  Google Scholar 

  • P. Korneev, V. Tikhonchuk, E. Humières, Magnetization of laser-produced plasma in a chiral hollow target. New J. Phys. 19, 033023 (2017)

    ADS  Google Scholar 

  • A.L. Kritcher, C.V. Young, H.F. Robey et al., Design of inertial fusion implosions reaching the burning plasma regime. Nat. Phys. 18(3), 251–258 (2022)

    Google Scholar 

  • N.L. Kugland, D.D. Ryutov, C. Plechaty et al., Invited article: relation between electric and magnetic field structures and their proton-beam images. Rev. Sci. Instrum. 83, 101301 (2012)

    ADS  Google Scholar 

  • R.M. Kulsrud, E.G. Zweibel, On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901 (2008)

    ADS  Google Scholar 

  • K.L. Lancaster, J.S. Green, D.S. Hey et al., Measurements of energy transport patterns in solid density laser plasma interactions at intensities of \(5\times 1020\,\text{W}\,\text{cm}^{-2}\). Phys. Rev. Lett. 98, 125002 (2007)

    ADS  Google Scholar 

  • K.F.F. Law, M. Bailly-Grandvaux, A. Morace et al., Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry. Appl. Phys. Lett. 108, 091104 (2016)

    ADS  Google Scholar 

  • K.F.F. Law, Y. Abe, A. Morace et al., Relativistic magnetic reconnection in laser laboratory for testing an emission mechanism of hard-state black hole system. Phys. Rev. E 102, 033202 (2020)

    ADS  Google Scholar 

  • L.S. Leal, A.V. Maximov, E.C. Hansen et al., Effect of laser preheat in magnetized liner inertial fusion at OMEGA. Phys. Plasmas 29, 042703 (2022)

    ADS  Google Scholar 

  • Z. Lécz, A. Andreev, A. Seryi, Plasma rotation with circularly polarized laser pulse. Laser Part. Beams 34(1), 31–42 (2016a)

    ADS  Google Scholar 

  • Z. Lécz, I.V. Konoplev, A. Seryi et al., GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma. Sci. Rep. 6, 36139 (2016b)

    ADS  Google Scholar 

  • J.M. Levesque, L.J. Beesley, Reconstructing magnetic deflections from sets of proton images using differential evolution. Rev. Sci. Instrum. 92, 093505 (2021)

    ADS  Google Scholar 

  • K. Li, W. Yu, Laser propagation in a highly magnetized over-dense plasma. Phys. Plasmas 27, 102712 (2020)

    ADS  Google Scholar 

  • C.K. Li, F.H. Séguin, J.A. Frenje et al., Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography. Phys. Rev. Lett. 97, 135003 (2006)

    ADS  Google Scholar 

  • C. Li, F. Seguin, J.A. Frenje et al., Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas. Phys. Rev. Lett. 99, 055001 (2007)

    ADS  Google Scholar 

  • H. Li, X. Tang, S. Hang et al., High-directional laser-plasma-induced X-ray source assisted by collimated electron beams in targets with a self-generated magnetic field. Fusion Eng. Des. 144, 193–201 (2019)

    Google Scholar 

  • H. Li, S. Sakata, T. Johzaki et al., Enhanced relativistic electron beams intensity with self-generated resistive magnetic field. High Energy Density Phys. 36, 100773 (2020)

    Google Scholar 

  • B.F. Liu, S. Mineshige, K. Ohsuga, Spectra from a magnetic reconnection-heated corona in active galactic nuclei. Astrophys. J. 587(2), 571–579 (2003)

    ADS  Google Scholar 

  • D. Liu, W. Fan, L. Shan et al., Ab initio simulations for expanded gold fluid in metal–nonmetal transition regime. Phys. Plasmas 26, 122705 (2019)

    ADS  Google Scholar 

  • A. Longman, R. Fedosejevs, Kilo-Tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams. Phys. Rev. Res. 3, 043180 (2021)

    Google Scholar 

  • S.X. Luan, W. Yu, F.Y. Li et al., Laser propagation in dense magnetized plasma. Phys. Rev. E 94, 053207 (2016)

    ADS  Google Scholar 

  • C. Lv, F. Wan, Y.-J. Hou et al., Guiding and collimating the fast electrons by using a low-density-core target with buried high density layers. Plasma Phys. Control. Fusion 59, 025006 (2017)

    ADS  Google Scholar 

  • P. Mabey, B. Albertazzi, G. Rigon et al., Laboratory study of bilateral supernova remnants and continuous MHD shocks. Astrophys. J. 896, 167 (2020)

    ADS  Google Scholar 

  • S. Malko, C. Johnson, D.B. Schaeffer et al., Design of proton deflectometry with in situ x-ray fiducial for magnetized high-energy-density systems. Appl. Opt. 61(6), C133–C142 (2022)

    Google Scholar 

  • A. Marcowith, A. Bret, A. Bykov et al., The microphysics of collisionless shock waves. Rep. Prog. Phys. 79, 046901 (2016)

    ADS  Google Scholar 

  • R.J. Mason, M. Tabak, Magnetic field generation in high-intensity-laser-matter interactions. Phys. Rev. Lett. 80(3), 524–527 (1998)

    ADS  Google Scholar 

  • K. Matsuo, H. Nagatomo, Z. Zhang et al., Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field. Phys. Rev. E 95, 053204 (2017)

    ADS  Google Scholar 

  • K. Matsuo, N. Higashi, N. Iwata et al., Petapascal pressure driven by fast isochoric heating with a multipicosecond intense laser pulse. Phys. Rev. Lett. 124, 035001 (2020)

    ADS  Google Scholar 

  • E.A. McLean, J.A. Stamper, C.K. Manka et al., Observation of magnetic fields in laser-produced plasma using the Zeeman effect. Phys. Fluids 27(5), 1327–1335 (1984)

    ADS  Google Scholar 

  • S. Mondal, V. Narayanan, W.J. Ding et al., Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas. Proc. Natl. Acad. Sci. USA 109(21), 8011–8015 (2012)

    ADS  Google Scholar 

  • J.D. Moody, Boosting inertial-confinement-fusion yield with magnetized fuel. Physics 14(51), 1–5 (2021)

    Google Scholar 

  • J.D. Moody, B.B. Pollock, H. Sio et al., Increased ion temperature and neutron yield observed in magnetized indirectly driven D$_{2}$-filled capsule implosions on the national ignition facility B field. Phys. Rev. Lett. 129, 195002 (2022a)

    ADS  Google Scholar 

  • J.D. Moody, B.B. Pollock, H. Sio et al., The magnetized indirect drive project on the National Ignition Facility. J. Fusion Energy 41(7) (2022b). https://doi.org/10.1007/s10894-022-00319-7

  • P. Mora, Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002 (2003)

    ADS  Google Scholar 

  • Y. Mori, Y. Nishimura, R. Hanayama et al., Fast heating of imploded core with counterbeam configuration. Phys. Rev. Lett. 117, 055001 (2016)

    ADS  Google Scholar 

  • H. Morita, Generation model of laser-driven magnetic field with consideration of warm-dense-matter properties. PhD thesis, Osaka University (2021)

  • H. Morita, B.B. Pollock, C.S. Goyon et al., Dynamics of laser-generated magnetic fields using long laser pulses. Phys. Rev. E 103, 033201 (2021)

    ADS  Google Scholar 

  • T. Morita, T. Kojima, S. Matsuo et al., Detection of current-sheet and bipolar ion flows in a self-generated antiparallel magnetic field of laser-produced plasmas for magnetic reconnection research. Phys. Rev. E 106, 055207 (2022)

    ADS  Google Scholar 

  • M. Murakami, M.M. Basko, Self-similar expansion of finite-size non-quasi-neutral plasmas into vacuum: relation to the problem of ion acceleration. Phys. Plasmas 13, 012105 (2006)

    ADS  Google Scholar 

  • M. Murakami, J.J. Honrubia, K. Weichman et al., Generation of megatesla magnetic fields by intense-laser-driven microtube implosions. Sci. Rep. 10(1), 1–11 (2020)

    Google Scholar 

  • Z. Najmudin, M. Tatarakis, A. Pukhov et al., Measurements of the inverse faraday effect from relativistic laser interactions with an underdense plasma. Phys. Rev. Lett. 87, 215004 (2001)

    ADS  Google Scholar 

  • D. Nakamura, A. Ikeda, H. Sawabe et al., Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Rev. Sci. Instrum. 89, 095106 (2018)

    ADS  Google Scholar 

  • N. Naseri, V.Y. Bychenkov, W. Rozmus, Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas. Phys. Plasmas 17, 083109 (2010)

    ADS  Google Scholar 

  • P.M. Nilson, L. Willingale, M.C. Kaluza et al., Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions. Phys. Rev. Lett. 97, 255001 (2006)

    ADS  Google Scholar 

  • R. Nuter, P. Korneev, I. Thiele et al., Plasma solenoid driven by a laser beam carrying an orbital angular momentum. Phys. Rev. E 98, 033211 (2018)

    ADS  Google Scholar 

  • R. Nuter, P. Korneev, E. Dmitriev et al., Gain of electron orbital angular momentum in a direct laser acceleration process. Phys. Rev. E 101, 053202 (2020)

    ADS  Google Scholar 

  • C.A. Palmer, P.T. Campbell, Y. Ma et al., Field reconstruction from proton radiography of intense laser driven magnetic reconnection. Phys. Plasmas 26, 083109 (2019)

    ADS  Google Scholar 

  • M. Passoni, M. Lontano, Theory of light-ion acceleration driven by a strong charge separation. Phys. Rev. Lett. 101, 115001 (2008)

    ADS  Google Scholar 

  • M. Passoni, C. Perego, A. Sgattoni et al., Advances in target normal sheath acceleration theory. Phys. Plasmas 20, 060701 (2013)

    ADS  Google Scholar 

  • J.L. Peebles, J.R. Davies, D.H. Barnak et al., Axial proton probing of magnetic and electric fields inside laser-driven coils. Phys. Plasmas 27, 063109 (2020)

    ADS  Google Scholar 

  • J.L. Peebles, J.R. Davies, D.H. Barnak et al., An assessment of generating quasi-static magnetic fields using laser-driven “capacitor’’ coils. Phys. Plasmas 29, 080501 (2022)

    ADS  Google Scholar 

  • L.J. Perkins, B.G. Logan, G.B. Zimmerman et al., Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields. Phys. Plasmas 20, 072708 (2013)

    ADS  Google Scholar 

  • L.J. Perkins, D.D. Ho, B.G. Logan et al., The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion. Phys. Plasmas 24, 062708 (2017)

    ADS  Google Scholar 

  • J.R. Peterson, S. Glenzer, F. Fiuza, Magnetic field amplification by a nonlinear electron streaming instability. Phys. Rev. Lett. 126, 215101 (2021)

    ADS  Google Scholar 

  • J.J. Pilgram, M.B. Adams, C.G. Constantin et al., High repetition rate exploration of the Biermann battery effect in laser produced plasmas over large spatial regions. High Power Laser Sci. Eng. 10, e13 (2022)

    Google Scholar 

  • Y. Ping, J. Zhong, X. Wang et al., Reconnection rate and multi-scale relativistic magnetic reconnection driven by ultra-intense lasers. Plasma Phys. Control. Fusion 63, 085012 (2021)

    ADS  Google Scholar 

  • T. Pisarczyk, S.Y. Gus, A. Zaras-szydłowsk et al., Magnetized plasma implosion in a snail target driven by a moderate-intensity laser pulse. Sci. Rep. 8(17895), 1–11 (2018)

    Google Scholar 

  • C. Plechaty, R. Presura, S. Stein et al., Penetration of a laser-produced plasma across an applied magnetic field. High Energy Density Phys. 6, 258–261 (2010)

    ADS  Google Scholar 

  • E. Porat, S. Lightman, I. Cohen et al., Spiral phase plasma mirror. J. Opt. 24, 085501 (2022)

    ADS  Google Scholar 

  • A. Pukhov, Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys. Rev. Lett. 86(16), 3562–3565 (2001)

    ADS  Google Scholar 

  • B. Ramakrishna, S. Kar, A.P.L. Robinson et al., Laser-driven fast electron collimation in targets with resistivity boundary. Phys. Rev. Lett. 105, 135001 (2010)

    ADS  Google Scholar 

  • P.K. Rambo, I.C. Smith, J.L. Porter et al., Z-Beamlet: a multikilojoule, terawatt-class laser system. Appl. Opt. 44(12), 2421–2430 (2005)

    ADS  Google Scholar 

  • A.E. Raymond, C.F. Dong, A. McKelvey et al., Relativistic-electron-driven magnetic reconnection in the laboratory. Phys. Rev. E 98, 043207 (2018)

    ADS  Google Scholar 

  • A.P. Robinson, M. Sherlock, Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition. Phys. Plasmas 14, 083105 (2007)

    ADS  Google Scholar 

  • M.J. Rosenberg, C.K. Li, W. Fox et al., A laboratory study of asymmetric magnetic reconnection in strongly driven plasmas. Nat. Commun. 6, 6190 (2015)

    ADS  Google Scholar 

  • G. Rosenzweig, E. Kroupp, T. Queller et al., Local measurements of the spatial magnetic field distribution in a z-pinch plasma during and near stagnation using polarization spectroscopy. Phys. Plasmas 27, 022705 (2020)

    ADS  Google Scholar 

  • M. Roth, M. Schollmeier, Ion acceleration—target normal sheath acceleration, CERN in the Proceedings of the 2014 CAS-CERN Accelerator School: Plasma Wake Acceleration, Geneva, Switzerland, vol. 1, pp. 231–270 (2016). https://doi.org/10.5170/CERN-2016-001.231

  • J.D. Sadler, H. Li, K.A. Flippo, Parameter space for magnetization effects in high-energy-density plasmas. Matter Radiat. Extremes 6, 065902 (2021)

    Google Scholar 

  • S. Sakata, S. Lee, H. Morita et al., Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states. Nat. Commun. 9, 3937 (2018)

    ADS  Google Scholar 

  • T. Sano, Y. Tanaka, N. Iwata et al., Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas. Phys. Rev. E 96, 043209 (2017)

    ADS  Google Scholar 

  • J.J. Santos, L. Giuffrida, S. Fujioka et al., Laser-driven platform for generation and characterization of strong quasi-static magnetic fields. New J. Phys. 17, 083051 (2015)

    Google Scholar 

  • J.J. Santos, M. Bailly-Grandvaux, M. Ehret et al., Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. Phys. Plasmas 25, 056705 (2018)

    ADS  Google Scholar 

  • G. Sarri, A. MacChi, C.A. Cecchetti et al., Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction. Phys. Rev. Lett. 109, 205002 (2012)

    ADS  Google Scholar 

  • T. Sato, Y. Iwamoto, S. Hashimoto et al., Features of particle and heavy ion transport code system (PHITS) version 3.02. J. Nucl. Sci. Technol. 55(6), 684–690 (2018)

    Google Scholar 

  • D.B. Schaeffer, W. Fox, D. Haberberger et al., High-Mach number, laser-driven magnetized collisionless shocks. Phys. Plasmas 24, 122702 (2017)

    ADS  Google Scholar 

  • F. Schillaci, M.D. Marco, L. Giuffrida et al., Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields. AIP Adv. 8, 025103 (2018)

    ADS  Google Scholar 

  • M. Schollmeier, M. Geissel, A.B. Sefkow et al., Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams. Rev. Sci. Instrum. 85, 043305 (2014)

    ADS  Google Scholar 

  • A.B. Sefkow, S.A. Slutz, J.M. Koning et al., Design of magnetized liner inertial fusion experiments using the Z facility. Phys. Plasmas 21, 072711 (2014)

    ADS  Google Scholar 

  • M. Shaikh, A.D. Lad, K. Jana et al., Megagauss magnetic fields in ultra-intense laser generated dense plasmas. Plasma Phys. Control. Fusion 59, 014007 (2017)

    ADS  Google Scholar 

  • R.V. Shapovalov, G. Brent, R. Moshier et al., Design of 30-T pulsed magnetic field generator for magnetized high-energy-density plasma experiments. Phys. Rev. Accel. Beams 22, 080401 (2019)

    Google Scholar 

  • Y. Shi, B. Shen, L. Zhang et al., Light fan driven by a relativistic laser pulse. Phys. Rev. Lett. 112, 235001 (2014)

    ADS  Google Scholar 

  • Z.M. Sheng, J. Meyer-ter-Vehn, Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas. Phys. Rev. E 54(2), 1833 (1996)

    ADS  Google Scholar 

  • G. Shvets, N.J. Fisch, J.M. Rax, Magnetic field generation through angular momentum exchange between circularly polarized radiation and charged particles. Phys. Rev. E 65, 046403 (2002)

    ADS  Google Scholar 

  • D.B. Sinars, M. Sweeney, C. Alexander et al., Review of pulsed power-driven high energy density physics research on Z at Sandia Review of pulsed power-driven high energy density physics research on Z at Sandia. Phys. Plasmas 27, 070501 (2020)

    ADS  Google Scholar 

  • S.A. Slutz, M.C. Herrmann, R.A. Vesey et al., Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas 17, 056303 (2010)

    ADS  Google Scholar 

  • J.A. Stamper, Review on spontaneous magnetic fields in laser-produced plasmas: phenomena and measurements. Laser Part. Beams 9(4), 841–862 (1991)

    ADS  Google Scholar 

  • R. Takizawa, H. Morita, K. Matsuo et al., Experimental investigation of voltage generation mechanism of laser-driven coil. J. Phys. Soc. Jpn. 91, 064501 (2022)

    ADS  Google Scholar 

  • C. Thompson, A model of gamma-ray bursts. Mon. Not. R. Astron. Soc. 270(3), 480–498 (1994)

    ADS  Google Scholar 

  • V.T. Tikhonchuk, M. Bailly-Grandvaux, J.J. Santos et al., Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly. Phys. Rev. E 96, 023202 (2017)

    ADS  Google Scholar 

  • U. Wagner, M. Tatarakis, A. Gopal et al., Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas. Phys. Rev. E 70, 026401 (2004)

    ADS  Google Scholar 

  • W. Wang, H.B. Cai, J. Teng et al., Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target. Phys. Plasmas 25, 083111 (2018)

    ADS  Google Scholar 

  • K. Weichman, A.P.L. Robinson, M. Murakami et al., Progress in relativistic laser–plasma interaction with kilotesla-level applied magnetic fields. Phys. Plasmas 29, 053104 (2022)

    ADS  Google Scholar 

  • S.C. Wilks, A.B. Langdon, T.E. Cowan et al., Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542 (2001)

    ADS  Google Scholar 

  • G. Williams, S. Patankar, D.A. Mariscal et al., Laser intensity scaling of the magnetic field from a laser-driven coil target. J. Appl. Phys. 17, 083302 (2020)

    ADS  Google Scholar 

  • L. Willingale, P.M. Nilson, M.C. Kaluza et al., Proton deflectometry of a magnetic reconnection geometry. Phys. Plasmas 17, 043104 (2010)

    ADS  Google Scholar 

  • D.A. Yager-Elorriaga, M.R. Gomez, D.E. Ruiz et al., An overview of magneto-inertial fusion on the Z machine at Sandia National Laboratories. Nucl. Fusion 62, 042015 (2022)

    ADS  Google Scholar 

  • M. Yamada, R. Kulsrud, H. Ji, Magnetic reconnection. Rev. Mod. Phys. 82(1), 603–664 (2010)

    ADS  MATH  Google Scholar 

  • L. Yi, B. Shen, A. Pukhov et al., Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab. Nat. Commun. 9, 1601 (2018)

    ADS  Google Scholar 

  • H. Yoneda, T. Namiki, A. Nishida et al., Strong compression of a magnetic field with a laser-accelerated foil. Phys. Rev. Lett. 109, 125004 (2012)

    ADS  Google Scholar 

  • X. Yuan, C. Zhou, H. Zhang et al., Full treatment of the proton radiography technique for laser-driven capacitor-coil targets. Plasma Phys. Control. Fusion 63, 125024 (2021)

    ADS  Google Scholar 

  • Z. Zhang, B. Zhu, Y. Li et al., Generation of strong magnetic fields with a laser-driven coil. High Power Laser Sci. Eng. 6, e38 (2018). https://doi.org/10.1017/hpl.2018.33

    Article  Google Scholar 

  • D. Zhang, J. Li, J. Xin et al., Self-generated magnetic field in ablative Rayleigh–Taylor instability. Phys. Plasmas 29, 072702 (2022)

    ADS  Google Scholar 

  • C.Y. Zheng, X.T. He, S.P. Zhu, Magnetic field generation and relativistic electron dynamics in circularly polarized intense laser interaction with dense plasma. Phys. Plasmas 12, 044505 (2005)

    ADS  Google Scholar 

  • B. Zhu, Z. Zhang, W. Jiang et al., Ultrafast pulsed magnetic fields generated by a femtosecond laser. Appl. Phys. Lett. 113, 072405 (2018)

    ADS  Google Scholar 

  • B. Zhu, Z. Zhang, C. Liu et al., Observation of Zeeman splitting effect in a laser-driven coil. Matter Radiat. Extremes 7, 024402 (2022)

    Google Scholar 

  • M.A. Zosa, Y.J. Gu, M. Murakami, 100-kT magnetic field generation using paisley targets by femtosecond laser–plasma interactions. Appl. Phys. Lett. 120, 132403 (2022)

    ADS  Google Scholar 

  • A.B. Zylstra, O.A. Hurricane, D.A. Callahan et al., Burning plasma achieved in inertial fusion. Nature 601, 542–548 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for JSPS Research Fellow (Grant no. 20J10496), KAKENHI (Grants nos. 15KK0163, 16K13918, 16H02245, 20H01886, 20H00140, 21H04454, and 22H00118), the Osaka University Scholarship for Overseas Research Activities 2018, Japan/U.S. Cooperation in Fusion Research and Development, the Matsuo Research Foundation, and the Research Foundation for Opto-Science and Technology, MEXT Project for promoting public utilization of advanced research infrastructure Program for advanced research equipment platforms-Grant Number JPMXS0450300121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Morita.

Ethics declarations

Conflict of interest

The authors claims they have no conflict of interest, financial or otherwise to the best of our knowledge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, H., Fujioka, S. Generation, measurement, and modeling of strong magnetic fields generated by laser-driven micro coils. Rev. Mod. Plasma Phys. 7, 13 (2023). https://doi.org/10.1007/s41614-023-00115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-023-00115-6

Keywords

Navigation