Skip to main content

Advertisement

Log in

Effects of erbium laser radiation on the dentin organic matrix

  • Review Article
  • Published:
Lasers in Dental Science Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to conduct a review of the literature about the effects of Er:YAG and Er,Cr:YSGG lasers on the dentin organic matrix, and its effect on dentin adhesion.

Materials and methods

An electronic search was performed on PubMed, SciELO, and Cochrane Library databases. The search was limited to studies from 2000 to 2020.

Results

According to the literature, the use of water irrigation is crucial to avoid uncontrolled increase of the dentin temperature. Long pulse durations showed worst results, because energy is transformed into conductive heat, leading to significant alterations of the dentin organic components. Output energy and frequency used, also influenced the dentin characteristics, and a good management of these two parameters is needed to not provoke greater damage on the dentin organic matrix.

Conclusion

The effects of erbium laser irradiation on the dentin organic matrix depend on the parameters used, and, consequently, affect the adhesion to dentin. The lack of studies and the heterogeneity between the selected ones were limitations of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lee BS, Lin PY, Chen MH, Hsieh TT, Lin CP, Lai JY, et al. Tensile bond strength of Er,Cr:YSGG laser-irradiated human dentin and analysis of dentin-resin interface. Dent Mater [Internet]. 2007 Apr [cited 2020 Mar 29];23(5):570–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16820200

  2. Ramos TM, Ramos-Oliveira TM, Moretto SG, De Freitas PM, Esteves-Oliveira M, De Paula Eduardo C. Microtensile bond strength analysis of adhesive systems to Er:YAG and Er,Cr:YSGG laser-treated dentin. Lasers Med Sci [Internet]. 2014 Mar [cited 2020 Mar 29];29(2):565–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23354743

  3. Van As G. Erbium lasers in dentistry [Internet]. Vol. 48, Dental Clinics of North America. 2004 [cited 2020 Apr 12]. p. 1017–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15464563

  4. Jacobsen T, Norlund A, Englund GS, Tranæus S. Application of laser technology for removal of caries: a systematic review of controlled clinical trials [Internet]. Vol. 69, Acta Odontologica Scandinavica. 2011 [cited 2020 Apr 12]. p. 65–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21319941

  5. Lopes RM, Trevelin LT, Da Cunha SRB, De Oliveira RF, De Andrade Salgado DMR, De Freitas PM, et al. Dental adhesion to erbium-lased tooth structure: a review of the literature [Internet]. Vol. 33, Photomedicine and Laser Surgery. Mary Ann Liebert Inc.; 2015 [cited 2020 Feb 29]. p. 393–403. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26226169

  6. Ayar MK, Erdermir F. Bonding strength of universal adhesives to Er,Cr:YSGG Laser-Irradiated Dentin. Niger J Clin Pract [Internet]. 2018 Jan 1 [cited 2020 Mar 30];21(1):93–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29411731

  7. Aljdaimi A, Devlin H, Dickinson M, Alfutimie A (2018 Aug 1) Effect of 2.94 μm Er: YAG laser on the chemical composition of hard tissues. Microsc Res Tech 81(8):887–896

    Article  Google Scholar 

  8. Bertassoni LE. Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Vol. 33, Dental Materials. Elsevier Inc.; 2017. p. 637–49.

  9. Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, et al. Dentin bonding systems: from dentin collagen structure to bond preservation and clinical applications. Vol. 34, Dental Materials. Elsevier Inc.; 2018. p. 78–96.

  10. Silva A, Melo P, Ferreira J, Oliveira T, Gutknecht N (2019) Adhesion in dentin prepared with Er,Cr:YSGG laser: systematic review. Contemp Clin Dent 10(1):129–134

    Article  Google Scholar 

  11. Bertassoni LE, Orgel JPR, Antipova O, Swain M V. The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale. Vol. 8, Acta Biomaterialia. Elsevier; 2012. p. 2419–33

  12. Betancourt DE, Baldion PA, Castellanos JE (2019) Resin-dentin bonding interface: mechanisms of degradation and strategies for stabilization of the hybrid layer. Int J Biomater 2019:1–11

    Article  Google Scholar 

  13. de Mattos Pimenta Vidal C, Leme-Kraus AA, Rahman M, Farina AP, Bedran-Russo AK (2017 Oct 1) Role of proteoglycans on the biochemical and biomechanical properties of dentin organic matrix. Arch Oral Biol 82:203–208

    Article  Google Scholar 

  14. Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E. Dental adhesion review: aging and stability of the bonded interface [Internet]. Vol. 24, Dental Materials. 2008 [cited 2020 Apr 23]. p. 90–101. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17442386

  15. Tjäderhane L. Dentin bonding: Can we make it last? Oper Dent [Internet]. 2015 Jan 1 [cited 2020 Mar 30];40(1):4–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25615637

  16. Karadas M, Çağlar İ (2017 Jul 1) The effect of Er:YAG laser irradiation on the bond stability of self-etch adhesives at different dentin depths. Lasers Med Sci 32(5):967–974

    Article  Google Scholar 

  17. Matos AB, Trevelin LT, da Silva BTF, Francisconi-Dos-Rios LF, Siriani LK, Cardoso MV. Bonding efficiency and durability: current possibilities. Vol. 31, Brazilian Oral Research. Sociedade Brasileira de Hematologia e Hemoterapia; 2017. p. 3–22.

  18. Frassetto A, Breschi L, Turco G, Marchesi G, Di Lenarda R, Tay FR et al (2016 Feb 1) Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability - a literature review. Dent Mater 32(2):e41–e53

    Article  Google Scholar 

  19. Dos Santos PH, Karol S, Bedran-Russo AKB (2011) Nanomechanical properties of biochemically modified dentin bonded interfaces. J Oral Rehabil 38(7):541–546

    Article  Google Scholar 

  20. Trevelin LT, da Silva BTF, de Freitas PM, Matos AB. Influence of Er:YAG laser pulse duration on the long-term stability of organic matrix and resin-dentin interface. Lasers Med Sci [Internet]. 2019 Sep 1 [cited 2020 Feb 27];34(7):1391–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30762196

  21. Camerlingo C, Lepore M, Gaeta GM, Riccio R, Riccio C, De Rosa A et al (2004 Jul) Er:YAG laser treatments on dentine surface: micro-Raman spectroscopy and SEM analysis. J Dent 32(5):399–405

    Article  Google Scholar 

  22. Nahas P, Zeinoun T, Namour M, Ayach T, Nammour S (2018) Effect of Er:YAG laser energy densities on thermally affected dentin layer: morphological study. Laser Ther 27(2):90–90

    Article  Google Scholar 

  23. He Z, Chen L, Hu X, Shimada Y, Otsuki M, Tagami J, Ruan S (2017 Oct 1) Mechanical properties and molecular structure analysis of subsurface dentin after Er:YAG laser irradiation. J Mech Behav Biomed Mater 74:274–282

    Article  Google Scholar 

  24. Moretto SG, Azambuja N, Arana-Chavez VE, Reis AF, Giannini M, Eduardo C (2011 Aug) de P, et al. Effects of ultramorphological changes on adhesion to lased dentin-Scanning electron microscopy and transmission electron microscopy analysis. Microsc Res Tech 74(8):720–726

    Article  Google Scholar 

  25. Soares LES, Resende EBPS, Brugnera A, Zanin FAA, Martin AA (2007) Combined FT-Raman and SEM studies of the effects of Er:YAG laser irradiation on dentin. Photomed Laser Surg 25(4):239–244

    Article  Google Scholar 

  26. Soares LES, Brugnera A, Zanin F, Pacheco MTT, Martin AA (2006) Molecular analysis of Er:YAG laser irradiation on dentin. Braz Dent J 17(1):15–19

    Article  Google Scholar 

  27. Ramos ACB, Esteves-Oliveira M, Arana-Chavez VE, De Paula Eduardo C (2010 Mar) Adhesives bonded to erbium: yttrium-aluminum-garnet laser-irradiated dentin: Transmission electron microscopy, scanning electron microscopy and tensile bond strength analyses. Lasers Med Sci 25(2):181–189

    Article  Google Scholar 

  28. Bakry AS, Sadr A, Takahashi H, Otsuki M, Tagami J (2007) Analysis of Er:YAG lased dentin using attenuated total reflectance fourier transform infrared and X-ray diffraction techniques. Dent Mater J 26(3):422–428

    Article  Google Scholar 

  29. Aranha ACC, Eduardo CDP, Gutknecht N, Marques MM, Ramalho KM, Apel C (2007) Analysis of the interfacial micromorphology of adhesive systems in cavities prepared with Er,Cr:YSGG, Er:YAG laser and bur. Microsc Res Tech 70(8):745–751

    Article  Google Scholar 

  30. Koliniotou-Koumpia E, Kouros P, Zafiriadis L, Koumpia E, Dionysopoulos P, Karagiannis V (2012 Jan) Bonding of adhesives to Er:YAG laser-treated dentin. Eur J Dent 6(1):16–23

    Article  Google Scholar 

  31. Lee BS, Lin CP, Hung YL, Lan WH (2004 Aug) Structural changes of Er:YAG laser-irradiated human dentin. Photomed Laser Surg 22(4):330–334

    Article  Google Scholar 

  32. Trevelin LT, Marques MM, Aranha ACC, Arana-Chavez VE, Matos AB (2015 Jun 1) Effect of super short pulse Er: YAG laser on human dentin-scanning electron microscopy analysis. Microsc Res Tech 78(6):472–478

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Alves Vieira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, A.A., Silva, A.C.N. Effects of erbium laser radiation on the dentin organic matrix. Laser Dent Sci 5, 69–78 (2021). https://doi.org/10.1007/s41547-021-00122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41547-021-00122-1

Keywords

Navigation