Skip to main content
Log in

Investigation of a class of differential equations of complex order with boundary conditions

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this manuscript, a class of boundary value problems (BVPs) of complex order fractional differential equations (COFDEs) using the Caputo–Fabrizio (C–F) operator is considered. We develop appropriate results for the existence and uniqueness of solution to the problem under our study using Banach and Krasnoselskii’s fixed-point theorem. In addition, some others tools of nonlinear analysis are utilized in the derivation of our results. Additionally, we also derive some necessary conditions for stability analysis of the proposed problem using the concept of Ulam and Hyers (U–H). Finally, an example to justify our theoretical findings is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All the data is included within the paper.

References

  1. Srivastava, H.M. 2020. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Mathematical Journal 60 (1): 73–116.

    MathSciNet  Google Scholar 

  2. Miranda-Valdez, I.Y., J.G. Puente-Córdova, F.Y. Rentería-Baltiérrez, L. Fliri, M. Hummel, A. Puisto, J. Koivisto, and M.J. Alava. 2024. Viscoelastic phenomena in methylcellulose aqueous systems: Application of fractional calculus. Food Hydrocolloids 147: 109334.

    Article  CAS  Google Scholar 

  3. Samko, S.G., A.A. Kilbas, and O.I. Marichev. 1993. Fractional Integrals and Derivatives-Theory and Applications. Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  4. Mahata, S., N. Herencsar, and G. Maione. 2023. Optimal approximation of analog PID controllers of complex fractional-order. Fractional Calculus and Applied Analysis 2023: 1–28.

    MathSciNet  Google Scholar 

  5. Harikrishnan, S., K. Kanagarajan, and E.M. Elsayed. 2019. Existence and stability results for differential equations with complex order involving Hilfer fractional derivative. TWMS Journal of Pure and Applied Mathematics 10 (1): 94–101.

    MathSciNet  Google Scholar 

  6. Joshi, D.D., P.M. Gade, and S. Bhalekar. 2022. Study of low-dimensional nonlinear fractional difference equations of complex order. Chaos: An Interdisciplinary Journal of Nonlinear Science 32 (11): 113101.

    Article  MathSciNet  Google Scholar 

  7. Love, E.R. 1971. Fractional derivatives of imaginary order. Journal of the London Mathematical Society 2 (2–3): 241–259.

    Article  MathSciNet  Google Scholar 

  8. Makris, N., and M.C. Constantinou. 1993. Models of viscoelasticity with complex-order derivatives. Journal of Engineering Mechanics 119 (7): 1453–1464.

    Article  Google Scholar 

  9. Pinto, C.M.A., and J.A. Tenreiromachado. 2010. Complex order van der Pol oscillator. Nonlinear Dynamics 65 (3): 247–254.

    Article  MathSciNet  Google Scholar 

  10. Andriambololona, R., R. Tokiniaina, and H. Rakotoson. 2012. Definitions of complex order integrals and complex order derivatives using operator approach. International Journal of Latest Research in Science and Technology 1 (4): 317–323.

    Google Scholar 

  11. Ibrahim, R.W. 2013. Ulam stability of boundary value problem. Kragujevac Journal of Mathematics 37 (2): 287–297.

    MathSciNet  Google Scholar 

  12. Neamaty, A., M. Yadollahzadeh, and R. Darzi. 2015. On fractional differential equation with complex order. Journal of Progress in Fractional Differentiation and Applications 1 (3): 223–227.

    Google Scholar 

  13. Neamaty, A., M. Yadollahzadeh, and R. Darzi. 2015. On fractional differential equation with complex order. Progress in Fractional Differential Equations and Apllications 1 (3): 223–227.

    Google Scholar 

  14. Atanackovic, T.M., S. Konjik, S. Pilipovic, and D. Zorica. 2016. Complex order fractional derivatives in viscoelasticity. Mechanics of Time-Dependent Materials. 20 (2): 175–195.

    Article  ADS  CAS  Google Scholar 

  15. Pinto, C.M., and A.R. Carvalho. 2016. Fractional complex-order model for HIV infection with drug resistance during therapy. Journal of Vibration and Control 22 (9): 2222–2239.

    Article  Google Scholar 

  16. Vivek, D., K. Kanagarajan, and S. Harikrishnan. 2018. Dynamics and stability results of fractional integro-differential equations with complex order. Discontinuity, Nonlinearity, and Complexity 7 (2): 119–127.

    Article  Google Scholar 

  17. Vivek, D., K. Kanagarajan, and S. Harikrishnan. 2018. Dynamics and stability results of fractional pantograph equations with complex order. Journal of Applied Nonlinear Dynamics 7 (2): 179–187.

    Article  MathSciNet  Google Scholar 

  18. Elsayed, E.M., D. Vivek, and K. Kanagarajan. 2018. Existence and stability of fractional implicit differential equations with complex order. Journal of Universal Mathematics 2 (2): 154–165.

    Article  Google Scholar 

  19. Sweilam, N.H., S.M. Al-Mekhlafi, and D. Baleanu. 2020. Nonstandard finite difference method for solving complex-order fractional Burgers equations. Journal of Advanced Research 25: 19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caputo, M., and M. Fabrizio. 2015. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications 1: 73–85.

    Google Scholar 

  21. Losada, J., and J.J. Nieto. 2015. Properties of a new fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications 1: 87–92.

    Google Scholar 

  22. Caputo, M., and M. Fabrizio. 2016. Applications of new time and spatial fractional derivatives with exponential. Progress in Fractional Differentiation and Applications 2: 1–11.

    Article  Google Scholar 

  23. Maazouz, K., and R. Rodríguez-López. 2022. Differential equations of arbitrary order under Caputo-Fabrizio derivative: Some existence results and study of stability. Mathematical Biosciences and Engineering 19: 6234–6251.

    Article  MathSciNet  PubMed  Google Scholar 

  24. Liu, K., M. Feckan, D. O’Regan, and J.R. Wang. 2019. Hyers-Ulam stability and existence of solutions for differential equations with Caputo-Fabrizio fractional derivative. Mathematics 7 (4): 333.

    Article  Google Scholar 

  25. Baleanu, D., A. Mousalou, and S. Rezapoux. 2017. On the existence of solutions for some infinite coefficientsymetric Caputo-Fabrizio fractional integro-differential equations. Boundary Value Problem 2017: 1–9.

    Google Scholar 

  26. Gul, R., M. Sarwar, K. Shah, T. Abdeljawad, and F. Jarad. 2020. Qualitative analysis of implicit Dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations. Journal of Function Spaces 2020: 1–9.

    Article  MathSciNet  Google Scholar 

  27. Ahmad, M., A. Zada, and J. Alzabut. 2019. Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with p-Laplacian. Advances in Difference Equations 2019: 1–22.

    Article  MathSciNet  Google Scholar 

  28. Khan, H., W. Chen, and H. Sun. 2018. Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space. Mathematical Methods in the Applied Sciences 41 (9): 3430–3440.

    Article  ADS  MathSciNet  Google Scholar 

  29. Khan, H., A. Khan, F. Jarad, and A. Shah. 2020. Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system. Chaos, Solitons and Fractals 131: 109477.

    Article  MathSciNet  Google Scholar 

  30. Albasheir, N.A., A. Alsinai, A.U.K. Niazi, R. Shafqat, M. Romana, and A. Gargouri. Alhagyan. 2023. A theoretical investigation of Caputo variable order fractional differential equations: existence, uniqueness, and stability analysis. Computational and Applied Mathematics 42 (8): 367.

    Article  MathSciNet  Google Scholar 

  31. Dhayal, R., M. Malik, S. Abbas, A. Kumar, and R. Sakthivel. 2021. Approximation theorems for controllability problem governed by fractional differential equation. Evolution Equations and Control Theory 10 (2): 411–429.

    Article  MathSciNet  Google Scholar 

  32. Kumar, P., V. Govindaraj, and M. Murillo-Arcila. 2023. The existence, uniqueness, and stability results for a nonlinear coupled system using ?-Caputo fractional derivatives. Boundary Value Problems 2023 (1): 75.

    Article  MathSciNet  Google Scholar 

  33. Mishra, K.K., S. Dubey, and D. Baleanu. 2022. Existence and controllability of a class of non-autonomous nonlinear evolution fractional integrodifferential equations with delay. Qualitative Theory of Dynamical Systems 21 (4): 165.

    Article  MathSciNet  Google Scholar 

  34. Sharma, M., and S. Dubey. 2017. Analysis of fractional functional differential equations of neutral type with nonlocal conditions. Differential Equations and Dynamical Systems 25: 499–517.

    Article  MathSciNet  Google Scholar 

  35. Bruce, J.W., and F. Tari. 2000. Duality and implicit differential equations. CADERNOS DE MATEMATICA 1: 29–52.

    Google Scholar 

  36. Bhalekar, S., P.M. Gade, and D. Joshi. 2022. Stability and dynamics of complex order fractional difference equations. Chaos, Solitons and Fractals 158: 112063.

    Article  MathSciNet  Google Scholar 

  37. Burton, T.A. 1998. A fixed-point theorem of Krasnoselskii. Applied Mathematics Letters 11 (1): 85–88.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Prince Sultan University for support through TAS research lab.

Funding

No funding source exists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamal Shah or Thabet Abdeljawad.

Ethics declarations

Conflict of interest

There does not exist.

Additional information

Communicated by Dhirendra Bahuguna.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asma, Mehmood, A., Shah, K. et al. Investigation of a class of differential equations of complex order with boundary conditions. J Anal (2024). https://doi.org/10.1007/s41478-024-00738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41478-024-00738-z

Keywords

Mathematics Subject Classification

Navigation