Skip to main content
Log in

Lupaş type Bernstein operators on triangle with one curve side

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

The purpose of the paper is to introduce new analogues of Lupaş type Bernstein operators on a triangle with one curve side, their products and Boolean sums. We study these univariate operators and their interpolation properties. Based on Peano’s theorem and using modulus of continuity, the remainders of the approximation formula of corresponding operators are evaluated. It has been shown that parameter q provides more flexibility for approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anastassiou, G.A., and M.A. Khan. 2023. Korovkin type statistical approximation theorem for a function of two variables. J. Comput. Anal. Appl. 21 (7): 1176–1184.

    MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E., R. Askey, and R. Roy. 1999. Special functions, Encyclopedia Math Appl, vol. 71. Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  3. Ayman Mursaleen, M., A. Kilicman, and M. Nasiruzzaman. 2022. Approximation by \(q\)-Bernstein-Kantorovich operators with shifted knots of real parameters. FILOMAT 36: 1179–1194.

    Article  MathSciNet  Google Scholar 

  4. Ayman Mursaleen, M., and S. Serra-Capizzano. 2022. Statistical convergence via \(q\)-calculus and a Korovkin’s type approximation theorem. Axioms 11: 70. https://doi.org/10.3390/axioms11020070.

    Article  Google Scholar 

  5. Barnhill, R.E., G. Birkhoff, and W.J. Gordon. 1973. Smooth interpolation in triangle. J. Approx. Theory 8: 114–128.

    Article  MathSciNet  MATH  Google Scholar 

  6. Barnhill, R.E., and J.A. Gregory. 1975. Polynomial interpolation to boundary data on triangles. Math. Comp. 29 (131): 726–735.

    Article  MathSciNet  MATH  Google Scholar 

  7. Barnhill, R.E., and L. Mansfield. 1974. Error bounds for smooth interpolation in triangles. J. Approx. Theory 11: 306–318.

    Article  MathSciNet  MATH  Google Scholar 

  8. Barnhill, R.E., and L. Mansfield. 1972. Sard kernel theorems on triangular and rectangu- lar domains with extensions and applications to finite element error, Technical Report 11. Uxbridge: Department of Mathematics, Brunel University.

    Google Scholar 

  9. Barnhill, R.E. 1985. Surfaces in computer aided geometric design: survey with new results. Comput. Aided Geom. Des. 2: 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  10. Blaga, P., and G. Coman. 2009. Bernstein-type operators on triangles. Rev. Anal. Numér. Théor. Approx. 38 (1): 11–23.

    MathSciNet  MATH  Google Scholar 

  11. Böhmer, K., and Gh. Coman. 1977. Blending interpolation schemes on triangle with error bounds, vol. 571. Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer Verlag.

  12. Cai, Q.B., A. Kilicman, and M. Ayman Mursaleen. 2022. Approximation properties and \(q\)-statistical convergence of Stancu type generalized Baskakov–Szász operators. J. Funct. Spaces 2022: 2286500.

    MATH  Google Scholar 

  13. Cătinaş, T., and Gh. Coman. 2007. Some interpolation operators on a simplex domain. Stud. Univ. Babeş-Bolyai Math. 52 (3): 25–34.

    MathSciNet  MATH  Google Scholar 

  14. Coman, G., and P. Blaga. 2008. Interpolation operators with applications (1). Sci. Math. Jpn. 68 (3): 383–416.

    MathSciNet  MATH  Google Scholar 

  15. Coman, G., and P. Blaga. 2009. Interpolation operators with applications (2). Sci. Math. Jpn. 69 (1): 111–152.

    MathSciNet  MATH  Google Scholar 

  16. Coman, Gh., T. Cătinaş, M. Birou, A. Oprişan, C. Oşan, I. Pop, I. Somogyi and I. Todea. 2004. Interpolation Operators, Ed. Casa Cărţii de SŞtiinţă, Cluj-Napoca.

  17. Coman, Gh., and I. Gânscă. 1981. Blending approximation with applications in construction. Bul. Şt. Inst. Pol. Cluj-Napoca 24: 35–40.

    MATH  Google Scholar 

  18. Coman, Gh., I. Gânscă, and L. Ţâmbulea. 1993. Surfaces generated by blending interpolation. Stud. Univ. Babeş-Bolyai Math. 38: 39–48.

    MathSciNet  MATH  Google Scholar 

  19. Coons, S.A. 1964. Surface for computer aided design of space forms, Project MAC, Design Div. Cambridge: Depart. of Mech. Engineering, MIT.

    Google Scholar 

  20. Farouki, R.T., and V.T. Rajan. 1988. Algorithms for polynomials in Bernstein form. Comput. Aided Geometric Des. 5 (1): 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hall, C.A. 1969. Bicubic interpolation over triangles. J. Math. Mech. 19: 1–11.

    MathSciNet  MATH  Google Scholar 

  22. Oruç, Halil, and George M. Phillips. 2003. \(q\)-Bernstein polynomials and Bèzier curves. J. Comput. Appl. Math. 151: 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  23. Hana, L., Y. Chua, and Z. Qiu. 2014. Generalized B\(\acute{e}\)zier curves and surfaces based on Lupaş \(q\)-analogue of Bernstein operator. J. Comput. Appl. Math. 261: 352–363.

    Article  MathSciNet  Google Scholar 

  24. Hulme, B.L. 1972. A new bicubic interpolation over right triangle. J. Approx. Theory 5: 66–73.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Khan. 2019. Generalized B\(\acute{e}\)zier curves and their applications in computer aided geometric design, Ph.D. Thesis, SC & SS, JNU New Delhi.

  26. Lupaş, A. 1987. A \(q\)-analogue of the Bernstein operator. Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca 9: 85–92.

  27. Mahmudov, N. I., and P. Sabancıgil. 2010. Some approximation properties of Lupaş \(q\)-analogue of Bernstein operators, arXiv:1012.4245v1 [math.FA].

  28. Marshall, J.A., and A.R. Mitchell. 1973. An exact boundary technique for improved accuaracy in the finite element method. J. Inst. Math. Appl. 12: 355–362.

    Article  MathSciNet  MATH  Google Scholar 

  29. Marshall, J.A., and A.R. Mitchell. 1978. Blending interpolants in the finite element method. Int. J. Numer. Methods Eng. 12 (1): 77–83.

    Article  MathSciNet  MATH  Google Scholar 

  30. Mitchell, A. R., and R. Mcleod. 1978. Curved elements in the finite element method, Conference on Numer. Sol. Diff. Eq. Lecture Notes in Mathematics, 363, Springer Verlag, 89-104.

  31. Mursaleen, M., K.J. Ansari, and A. Khan. 2020. Approximation properties and error estimation of \(q\)-Bernstein shifted operators. Numer. Algor. 84: 207–227.

    Article  MathSciNet  MATH  Google Scholar 

  32. Mursaleen, M., and A. Khan. 2013. Generalized \(q\)-Bernstein–Schurer operators and some approximation theorems. J. Funct. Sp. Appl. 2: 719834.

    MathSciNet  MATH  Google Scholar 

  33. Mursaleen, M., and A. Alotaibi. 2012. Korovkin type approximation theorem for functions of two variables through statistical \(A\)-summability. Adv. Differ. Equ. 2012: 65.

    Article  MathSciNet  MATH  Google Scholar 

  34. Mursaleen, M., and S. Rahman. 2018. Dunkl generalization of \(q\)-Szász–Mirakjan operators which preserve \(x^2\). Filomat 32 (3): 733–747.

    Article  MathSciNet  MATH  Google Scholar 

  35. Nielson, G.M., D.H. Thomas, and J.A. Wixom. 1979. Interpolation in triangles. Bull. Aust. Math. Soc. 20 (1): 115–130.

    Article  MathSciNet  MATH  Google Scholar 

  36. Ostrovska, S. 2006. On the Lupaş, \(q\)-analogue of the Bernstein operator. Rocky Mountain J. Math. 36 (5): 1615–1629.

    Article  MathSciNet  MATH  Google Scholar 

  37. Phillips, G.M. 2000. A generalization of the Bernstein polynomials based on the \(q\)-integers. ANZIAM J. 42: 79–86.

    Article  MathSciNet  MATH  Google Scholar 

  38. Phillips, G.M. 1997. Bernstein polynomials based on the \(q\)-integers. Ann. Numer. Math. 4: 511–518.

    MathSciNet  MATH  Google Scholar 

  39. Rababah, A., and S. Manna. 2011. Iterative process for G2-multi degree reduction of B\(\acute{e}\)zier curves. Appl. Math. Comput. 217: 8126–8133.

    MathSciNet  MATH  Google Scholar 

  40. Renka, R.J., and A.K. Cline. 1984. A triangle-based \(C^{1}\) interpolation method. Rocky Mountain J. Math. 14 (1): 223–237.

    Article  MathSciNet  MATH  Google Scholar 

  41. Sard, A. 1963. Linear Approximation. Providence: American Mathematical Society.

    Book  MATH  Google Scholar 

  42. Schumaker, L.L. 1976. Fitting surfaces to scattered data. In Approximation Theory II (G, ed. G. Lorentz, C.K. Chui, and L.L. Schumaker, 203–268. Cambridge: Academic Press.

    Google Scholar 

  43. Sederberg, T. W. 2014. Computer Aided Geometric Design Course Notes, Department of Computer Science Brigham Young University, October 9.

  44. Stancu, D.D., and Approximation of bivariate functions by means of some Bernstein-type operators, Multivariate approximation (Sympos., Univ. Durham, Durham,. 1977. Academic Press. London-New York 1978: 189–208.

  45. Stancu, D.D. 1963. Evaluation of the remainder term in approximation formulas by Bernstein polynomials. Math. Comp. 17: 270–278.

    MathSciNet  MATH  Google Scholar 

  46. Stancu, D.D. 1964. The remainder of certain linear approximation formulas in two vari-ables. SIAM Numer. Anal. Ser. B 1: 137–163.

    MATH  Google Scholar 

  47. Victor, K., and C. Pokman. 2002. Quantum Calculus. New York: Springer-Verlag.

    MATH  Google Scholar 

  48. Weierstrass, K. 1885. Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen Sitzungsberichtedr. Koniglish Preussischen Akademie der Wissenschcaften zu Berlin 633–639: 789–805.

    MATH  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mursaleen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoori, M.S., Qasim, M., Khan, A. et al. Lupaş type Bernstein operators on triangle with one curve side. J Anal 31, 2225–2245 (2023). https://doi.org/10.1007/s41478-023-00561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-023-00561-y

Keywords

Mathematics Subject Classification

Navigation