Skip to main content
Log in

Some Boyd–Wong contraction type mappings in b-metric spaces

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

The aim of this paper is to introduce in the setting of b-metric spaces a class of pair of contractive-type mappings using the ideas of Boyd and Wong (Proc Am Math Soc 20(2):458–464, 1969). For this class of pairs of mappings we will prove the existence and uniqueness of a point of coincidence. Also, we will analyze the convergence and stability of several iterative schemes for this mappings on b-metric spaces endowed with a convex structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aamri, M., and D. El Moutawakil. 2002. Some new common fixed point theorems under strict contractive conditions. Journal of Mathematics Analysis Application 270: 181–188.

    Article  MathSciNet  MATH  Google Scholar 

  2. Aghajani, A., M. Abbas, and J.R. Roshan. 2014. Common fixed point of generalized weak contractive mappings in partially ordered \(b\)-metric spaces. Mathematics Slovaca 64 (4): 941–960.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alam, A., M. Imdad, and M. Arif. 2019. Observations on relation-theoretic coincidence theorems under Boyd-Wong type nonlinear contractions. Fixed Point Theory Application 2019: 6. https://doi.org/10.1186/s13663-019-0656-5.

    Article  MathSciNet  MATH  Google Scholar 

  4. Alecsa, C.D. 2017. On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces. International Journal of Nonlinear Analysis Application 8 (1): 353–388.

    MATH  Google Scholar 

  5. Bakhtin, I.A. 1989. The contraction mapping principle in almost metric spaces. Journal of Functional Analysis 30: 26–37.

    MathSciNet  MATH  Google Scholar 

  6. Berinde, V. 2007. Iterative Approximation of Fixed Points, LNM 1912, 322. Berlin: Springer.

    MATH  Google Scholar 

  7. Boyd, D.W., and S.G.W. Wong. 1969. On nonlinear contractions. Proceedings of American Mathematical Society 20 (2): 458–464.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chauhan, S., and J. Vujavić. 2015. Employing common limit range property with variants of \(R\)-weakly commuting mappings in metric spaces. Journal of Korean Society Mathematical Education Series B: Pure Applied Mathematics 22 (2): 127–138.

    MathSciNet  MATH  Google Scholar 

  9. Czerwik, S. 1993. Contraction mapping in \(b\)-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis 1 (1): 5–11.

    MathSciNet  MATH  Google Scholar 

  10. Czerwik, S. 1998. Non linear set valued mapping in \(b\)-metric spaces. Atte Seminar University Modena 46: 263–276.

    MATH  Google Scholar 

  11. Delbosco, D. 1976–77. Un’ estensione di un teorema sul punti fisso di S. Reich. Rend Seminar Mathematics University Torino, 35: 233–238.

  12. Jain, M., K. Tas, S. Kumar and Gupta, N. 2012. Coupled fixed point theorems for a pair of weakly compatible maps along with \(\text{CLR}_g\) property in fuzzy metric spaces. Journal of Applied Mathematics 2012: 961210.

  13. Jungck, G. 1986. Compatible mappings and common fixed points. International Journal of Mathematics and Mathematics Science 9: 771–779.

    Article  MathSciNet  MATH  Google Scholar 

  14. Jungck, G., and B.E. Rhoades. 2006. Fixed point theorems for occasionally weakly compatible mappings. Fixed Point Theory 7: 287–296.

    MathSciNet  MATH  Google Scholar 

  15. Khan, M.S., M. Swalech, and S. Sessa. 1984. Fixed point theorems by altering distances between the points. Bulletin of the Australian Mathematical Society 30: 323–326.

    Article  MathSciNet  Google Scholar 

  16. Lee, B.S. 2011. Strong convergence theorems with a Noor-type iterative scheme in convex metric spaces. Computers and Mathematics with Applications 61 (11): 3218–3225.

  17. Mitrea, D., I. Mitrea, M. Mitrea, and S. Monniaux. 2013. Groupoid Metrization Theory with Applications to Analysis on Quasi-Metric Spaces and Functional Analysis, 486, Appl. Num. Harm. Anal. Basel: Birkhäuser.

    MATH  Google Scholar 

  18. Morales, J.R., and E.M. Rojas. 2016. Contractive mappings of rational type controlled by minimal requirements functions. Afrika Matematika 27 (1–2): 65–77.

    Article  MathSciNet  MATH  Google Scholar 

  19. Morales, J.R., and E.M. Rojas. 2017. Geraghty’s approach for Kannan, Chatterjea and Branciari mappings in \(b\)-metric spaces. Indian Journal of Mathematics 59 (1): 73–106.

    MathSciNet  MATH  Google Scholar 

  20. Morales, J.R., and E.M. Rojas. 2021. Generalized \(\psi\)-Geraghty-Zamfirescu contraction pairs in \(b\)-metric spaces. Kyungpook Mathematics Journal 61: 279–308.

    MathSciNet  MATH  Google Scholar 

  21. Morales, J.R., and E.M. Rojas. 2021. Common fixed points for \((\psi -\varphi )\)-weak contractions type in \(b\)-metric spaces. Arabian Journal of Mathematics. https://doi.org/10.1007/s40065-021-00347-9.

    Article  MathSciNet  MATH  Google Scholar 

  22. Morales, J.R., E.M. Rojas, and R.K. Bisht. 2014. Common fixed points for pairs of mappings with variable contractive parameters. Abstract and Applied Analysis 2014: 7.

    Article  MathSciNet  MATH  Google Scholar 

  23. Murthy, P.P. 2001. Important tools and possible applications of metric fixed point theory. Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000). Nonlinear Analysis 47 (5): 3479–3490.

    Article  MathSciNet  MATH  Google Scholar 

  24. Olatinwo, M.O., and M. Postolache. 2012. Stability results for Jungck-type iterative processes in convex metrics paces. Applied Mathematics and Computation 218 (12): 6727–6732.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ostrowski, A.M. 1967. The round-off stability of iterations. Zeitschrift für Angewandte Mathematik und Mechanik 47: 77–81.

    Article  MathSciNet  MATH  Google Scholar 

  26. Pasicki, L. 2016. The Boyd-Wong idea extended. Fixed Point Theory Application 2016: 63. https://doi.org/10.1186/s13663-016-0553-0.

    Article  MathSciNet  MATH  Google Scholar 

  27. Popa, V., and M. Mocano. 2009. Altering distance and common fixed point under Implicit relations. Hacettepe Journal of Mathematics and Statistics 39 (3): 329–337.

    MathSciNet  MATH  Google Scholar 

  28. Razani, A., and M. Bagherboum. 2013. Convergence and stability of Jungck-type iterative procedures in convex \(b\)-metric spaces. Fixed Point Theory and Applications 2013: 331.

    Article  MathSciNet  MATH  Google Scholar 

  29. Reich, S. 1971. Some remarks concerning contraction mappings. Canadian Mathematics Bulletin 14: 121–124.

    Article  MathSciNet  MATH  Google Scholar 

  30. Reich, S. 1972. Fixed points of contractive functions. Bollettino della Unione Matematica Italiana 5: 26–42.

    MathSciNet  MATH  Google Scholar 

  31. Reich, S., and I. Shafrir. 1990. Nonexpansive iterations in hyperbolic spaces. Nonlinear Analysis 15: 537–53.

    Article  MathSciNet  MATH  Google Scholar 

  32. Roldan Lopez de Hierro, A.-F., and W. Sintunavarat. 2016. Common fixed point theorems in fuzzy metric spaces using the \(\text{ CLR}_g\) property. Fuzzy Sets and Systems 282: 131–142.

    Article  MathSciNet  MATH  Google Scholar 

  33. Singh, S.L., and A. Tomar. 2003. Weaker forms of commuting maps and existence of fixed points. Journal of Korean Society Mathematics Education Series B Pure Applied Mathematics 10 (3): 145–161.

    MathSciNet  MATH  Google Scholar 

  34. Singh, S.L., C. Bhatnagar, and S.N. Mishra. 2005. Stability of Jungck-type iterative procedures. International Journal of Mathematics and Mathematical Sciences 19: 3035–3043.

    Article  MathSciNet  MATH  Google Scholar 

  35. Singh, D., V. Chauhan, P. Kumam, and J. Vishal. 2018. Some applications of fixed point results for generalized two classes of Boyd-Wong’s \(F\)-contraction in partial \(b\)-metric spaces. Mathematics Science 12: 111–127. https://doi.org/10.1007/s40096-018-0250-8.

    Article  MathSciNet  MATH  Google Scholar 

  36. Sintunavarat, W., and P. Kumman. 2011. Common fixed point theorems for a pair of weakly compatible mappings in Fuzzy metric spaces. Journal of Applied Mathematics 2011: 637958.

    Article  MathSciNet  MATH  Google Scholar 

  37. Skof, F. 1977. Teorema di punti fisso per applicazioni negli spazi metrici. Atti Accad Aci Torino 111: 323–329.

    MathSciNet  MATH  Google Scholar 

  38. Takahashi, W. 1970. A convexity in metric spaces and nonexpansive mappings. Kodai Mathematics Seminar Representation 22: 142–149.

    MathSciNet  MATH  Google Scholar 

  39. S. Varošanec,. 2007. On \(h\)-convexity. Journal of Mathematics Analysis Application 326: 303–311.

Download references

Acknowledgements

The authors are grateful to the referee whose comments and suggestions lead to an improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edixon M. Rojas.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, R.E., Morales, J.R. & Rojas, E.M. Some Boyd–Wong contraction type mappings in b-metric spaces. J Anal 31, 911–944 (2023). https://doi.org/10.1007/s41478-022-00491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-022-00491-1

Keywords

Mathematics Subject Classification

Navigation