Skip to main content
Log in

Maximal subalgebras in \({{\mathfrak {s}}}{{\mathfrak {o}}}(2,1)\), addition theorems and Bessel–Clifford functions

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

We consider some maximal nilpotent and maximal commutative subalgebras in \({{\mathfrak {s}}}{{\mathfrak {o}}}(2,1)\). The exponential mapping of these subalgebras gives the corresponding one-parameter subgroups. The relations between the corresponding bases of carrier space (which contain eigenfunctions of the infinitesimal operators of subrepresentations to the obtained subgroups) and kernels of some representation operators give some integral formulas for Bessel–Clifford functions. These relations are found to be particular cases of one continual addition theorem for the function introduced by authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M. 1954. Regular and irregular Coulomb wave functions expressed in terms of Bessel–Clifford functions. J. Math. Phys. 33: 111–116. https://doi.org/10.1002/sapm1954331111.

    Article  MathSciNet  MATH  Google Scholar 

  2. Choi, J., and I.A. Shilin. 2022. A generalization of certain associated Bessel functions in connection with a group of shifts. Commun. Math. 30 (1): 103–118.

    MathSciNet  Google Scholar 

  3. Clifford, W.K. 1882. On Bessel functions Mathematical Papers. Oxford University Press, 346–349.

  4. Datolli, G., A. Torre, S. Lorenzutta, G. Maino, and C. Chiccoli. 1996. Generalized Bessel functions within the group representation formalism. Il Nuovo Cimento B. 111: 143–164.

    Article  Google Scholar 

  5. Gel’fand, I. M. and G. E. Shilov. 1964. Generalized Functions, Volume 1: Properties and Operations, AMS Chelsea Publishing.

  6. Delerue, P. 1953. Sur le calcul simbolique a \(n\) variables et les fonctions hyperbesseliennes. Ann. Soc. Sci. Bruxelles. 63: 229–274.

    MathSciNet  MATH  Google Scholar 

  7. Hayek, N. 1967. Sobre la transformaci’on de Hankel. In: Actas de la VIII Reuni’on Anual de Matematicos Epanoles, P. 47–60.

  8. Kluchantsev, M.I. 1983. Singular differential operators with \(r-1\) parameters, and Bessel functions of a vector index. Siberian Math. J. 24: 353–367.

    Article  MathSciNet  Google Scholar 

  9. Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and C. W. Clark. 2010. (Editors), NIST Handbook of Mathematical Functions, NIST and Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo.

  10. J. M. R. Mendez Perez and M. M. Socas Robayna, A pair of generalized Hankel–Clifford transformations and their applications, J. Math. Anal. Appl. 154(2) (1991), 543–557.

  11. Prudnikov, A. P., Brychkov. Yu. A., and O. I. Marichev. 1986. Integrals and Series, Volume 1: Elementary Functions, CRC Press.

  12. Prudnikov, A. P., Brychkov, Yu. A., and O. I. Marichev. 1986. Integrals and Series, Volume 2: Special Functions, CRC Press.

  13. Shilin, I.A. 2012. Double \(SO(2, 1)\)-integrals and formulas for Whittaker functions. Russian Math. 56: 47–56. https://doi.org/10.3103/S1066369X12050064.

    Article  MATH  Google Scholar 

  14. I. A. Shilin and J. Choi, Certain relations between Bessel and Whittaker functions related to some diagonal and block-diagonal \(3\times 3\)-matrices, J. Nonlinear Sci. Appl. 10 (2017), 560–574. https://doi.org/10.22436/jnsa.010.02.20

  15. I. A. Shilin and J. Choi, Certain relations between hyper Bessel–Cliffors, Macdonald and Meijer functions and hyper Hankel–Clifford intrgral transforms. (Submitted.)

  16. I. A. Shilin and J. Choi, Method of continual addition theorems and integral relations between Coulomb functions and Appell function \(F_1\). Comput. Math. Mathematical Phys. (Accepted). https://doi.org/10.31857/S004446692209006X

  17. I. A. Shilin and J. Choi, Some formulas for ordinary and hyper Bessel-Clifford functions related to the proper Lorentz group, J. Math. Sci. 259(5) (2021), 518–527. https://doi.org/10.1007/s10958-021-05644-4

  18. Shilin, I.A., J. Choi, and J.W. Lee. 2020. Some integrals involving Coulomb functions associated with the three-dimensional proper Lorentz group. AIMS Math. 5 (6): 5664–5682. https://doi.org/10.3934/math.2020362.

    Article  MathSciNet  MATH  Google Scholar 

  19. Vilenkin, N. Ja. 1968. Special Functions and the Theory of Group Representations, American Mathematical Society.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Shilin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by I. A. Shilin and J. Choi. The first draft of the manuscript was written by I. A. Shilin and J. Choi commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilin, I.A., Choi, J. Maximal subalgebras in \({{\mathfrak {s}}}{{\mathfrak {o}}}(2,1)\), addition theorems and Bessel–Clifford functions. J Anal 31, 719–732 (2023). https://doi.org/10.1007/s41478-022-00435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-022-00435-9

Keywords

Mathematics Subject Classification

Navigation