Skip to main content
Log in

Closed EP and hypo-EP operators on Hilbert spaces

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

A bounded linear operator A on a Hilbert space \({\mathcal {H}}\) is said to be an EP (hypo-EP) operator if ranges of A and \(A^*\) are equal (range of A is contained in range of \(A^*\)) and A has a closed range. In this paper, we define EP and hypo-EP operators for densely defined closed linear operators on Hilbert spaces and extend results from bounded linear operator settings to (possibly unbounded) closed linear operator settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ben-Israel and T.N.E. Greville. Generalized inverses: theory and applications; John Wiley and Sons: New York, NY, USA, 1974.

  2. S.J. Bernau. The square root of a positive self-adjoint operator. J. Austral. Math. Soc., 8: 17–36, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  3. K.G. Brock. A note on commutativity of a linear operator and its Moore-Penrose inverse. Numcr. Funct. Anal. Optim., 11 (7–8): 673–678, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  4. S.L. Campbell and C.D. Meyer. \(EP\) operators and generalized inverses. Canad. Math. Bull.,18 (3): 327–333, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Ding and L.J. Huang. On the perturbation of the least squares solutions in Hilbert spaces. In Proceedings of the 3rd ILAS Conference (Pensacola, FL, 1993), Linear Algebra Appl., 212/213:487–500, 1994.

  6. D.S. Djordjević and J.J. Koliha. Characterizing Hermitian, normal and EP operators. Filomat, 21 (1): 39–54, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.G. Douglas. On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc., 17: 413–415, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  8. C.W. Groetsch. Inclusions and identities for the Moore-Penrose inverse of a closed linear operator. Math. Nachr., 171: 157–164,  1995.

    Article  MathSciNet  MATH  Google Scholar 

  9. R.E. Hartwig and I.J. Katz. On products of EP matrices. Linear Algebra Appl., 252: 339–345,  1997.

    Article  MathSciNet  MATH  Google Scholar 

  10. Q. Huang, L. Zhu, and J. Yu. Some new perturbation results for generalized inverses of closed linear operators in Banach spaces. Banach J. Math. Anal., 6 (2): 58–68,  2012.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Itoh. On some EP operators. Nihonkai Math. J., 16 (1): 49–56,  2005.

    MathSciNet  MATH  Google Scholar 

  12. P.S. Johnson and A. Vinoth. Product and factorization of hypo-EP operators. Spec. Matrices, 6: 376–382,  2018.

    Article  MathSciNet  MATH  Google Scholar 

  13. I.J. Katz and M.H. Pearl. On \(EPr\) and normal \(EPr\) matrices. J. Res.Nat. Bur. Standards, Sect. B, 70B: 47–77,  1996.

    Article  MathSciNet  MATH  Google Scholar 

  14. M.T. Nair. Functional Analysis: A First Course. Prentice-Hall of India, second edition, 2021.

  15. M.T. Nair. Linear Operator Equations: Approximations and Regularization. World Scientific, first edition, 2009.

  16. M.Z. Nashed (Ed.). Generalized inverses and applications. Academic Press, New York, 1976.

    MATH  Google Scholar 

  17. M.H. Pearl. On generalized inverses of matrices. Proc. Cambridge Philos. Soc., 62: 673–677,  1966.

    Article  MATH  Google Scholar 

  18. A.B. Patel and M.P. Shekhawat. Hypo-EP operators. Indian J. Pure App. Math., 47 (1): 73–84, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Rudin. Functional Analysis, International Series in Pure and Applied Mathematics. McGraw-Hill Inc, Inc., New York, second edition, 1991

    Google Scholar 

  20. K. Schmüdgen. Unbounded self-adjoint operators on Hilbert space, volume 265 of Graduate Texts in Mathematics. Springer, Dordrecht, 2012.

  21. H. Schwerdtfeger. Introduction to linear algebra and the theory of matrices. P. Noordhoff, Groningen,  1950.

    MATH  Google Scholar 

  22. Zs. Tarcsay. Operator extensions with closed range. Acta Math. Hungar., 135 (4): 325–341,  2012.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Vinoth and P.S. Johnson. On sum and restriction of hypo-\(EP\) operators. Funct. Anal. Approx. Comput., 9 (1): 37–41,  2017.

    MathSciNet  MATH  Google Scholar 

  24. K. Yosida. Functional analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin-New York, sixth edition, 1980.

Download references

Acknowledgements

The author is thankful to Prof. M. Thamban Nair for having some discussion while preparing the manuscript and also for providing the proof for Theorem 2.13. He would like to thank the two referees for their constructive comments and suggestions, and especially one of them for entreating the author to add examples to illustrate Theorem 4.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sam Johnson.

Additional information

Communicated by Samy Ponnusamy.

Dedicated to Professor C. Ganesa Moorthy on his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, P.S. Closed EP and hypo-EP operators on Hilbert spaces. J Anal 30, 1377–1390 (2022). https://doi.org/10.1007/s41478-022-00401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-022-00401-5

Keywords

Mathematics Subject Classification

Navigation