Skip to main content
Log in

Product ordered Hausdorff continuous \(\mathbb {R}^{n}\)-interval functions

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

Vector-valued Sendov and Hausdorff continuity with intervals from a codomain of real Euclidean vector spaces isomorphic to \(\mathbb {R}^{n}\) (including a separable real Hilbert space case) are constructed using product orders. This is a specialization of van der Walt’s vector-valued Hausdorff continuity. The Dedekind order completion of continuous functions under product orders follows. Product ordered Sendov continuous functions pass the same property on to their codomain components, and in finite dimensions this is an equivalence. Hausdorff continuity behaves similarly. New ways to transform interval functions and Sendov and Hausdorff continuous functions using bounded linear operators are defined. An interpretation of Hausdorff continuity that is essentially basis independent results: Hausdorff continuity belongs basis independently to finite Euclidean space, and therefore to multivariate real analysis. Infinite dimensional real separable Hilbert space is also considered, with interesting results relevant to the study of Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, Y., and C. Aliprantis. 2002. An invitation to operator theory. Rhode Island: American Mathematical Society.

    Book  Google Scholar 

  2. Agarwal, P., R. Agarwal, and M. Ruzhansky. 2020. Special functions and analysis of differential equations. Oxford: Chapman and Hall/CRC Press.

    Book  Google Scholar 

  3. Alefeld, G., and J. Hertzberger. 2012. Introduction to interval computations. New York: Elsevier Academic Press.

    Google Scholar 

  4. Aliprantis, Burkinshaw. 1955. Positive operators. In Pure and applied mathematics, 119. New York: Academic Press.

  5. Aliprantis, C., and K. Border. 2005. Infinite dimensional analysis. In A Hitchhiker’s guide. New York: Springer.

  6. Anguelov, R. 2004. Dedekind order completion Of C(X) by Hausdorff continuous functions. Questiones Mathematicae 27: 153–170.

    Article  MathSciNet  Google Scholar 

  7. Anguelov, R. 2007. Rational extensions of C(X) via Hausdorff continuous functions. Thai Journal of Mathematics 5 (2): 261–272.

    MathSciNet  MATH  Google Scholar 

  8. Anguelov, R., and S. Markov. 1981. Extended segment analysis. Freiburger Intervall-Berichte 10: 1–63.

    Google Scholar 

  9. Anguelov, R., and S. Markov. 2006. Numerical computations With Hausdorff continuous functions. In Numerical methods and applications 2006, Lecture Notes in Computer Science 4310, pp. 279–286. Springer.

  10. Anguelov, R., and E. Rosinger. 2005. Hausdorff continuous solutions of nonlinear PDEs through the order completion method. Questiones Mathematicae 28 (3): 271–285. https://doi.org/10.2989/16073600509486128

    Article  MATH  Google Scholar 

  11. Anguelov, R., and E. Rosinger. 2007. Solving large classes of nonlinear systems of PDEs. Computers & Mathematics with Applications 53 (3–4): 491–507. https://doi.org/10.1016/j.camwa.2006.02.040

    Article  MathSciNet  MATH  Google Scholar 

  12. Anguelov, R., and J. van der Walt. 2005. Order convergence structure on c(X). Questiones Mathematicae 28 (4): 425–457.

    Article  MathSciNet  Google Scholar 

  13. Baire, R. 1905. Leçons Sur Les Fonctions Discontinues. Professées Au Collège De France Rédigées Par Arnaud Denjoy, Paris: Gauthier-Villars.

  14. Dăneţ, N. 2009. When is every Hausdorff continuous interval-valued function bounded by continuous functions. Questiones Mathematicae 32: 363–369.

    Article  MathSciNet  Google Scholar 

  15. Ercan, Z., and A. Wickstead. 1996. Banach lattices of continuous Banach lattice-valued functions. Journal of Mathematical Analysis and Applications 198: 121–136.

    Article  MathSciNet  Google Scholar 

  16. Ha, D.M. 2006. Functional analysis: a gentle introduction. New York: Matrix Editions/University of Michigan.

    MATH  Google Scholar 

  17. Jordan, T. 1969. Linear operators for quantum mechanics. New York: Wiley.

    Book  Google Scholar 

  18. Kraemer, W., and J.W. von Gudenberg, eds. 2001. Scientific computing, validated numerics, interval methods. Moscow: Kluwer Academic.

    Google Scholar 

  19. Luxemburg, W., and A. Zaanen. 1971. Riesz spaces I & II. Amsterdam: North Holland.

  20. Mack, J., and D. Johnson. 1967. The dedekind completion of C(X). Pacific Journal of Mathematics 20: 231–243.

    Article  MathSciNet  Google Scholar 

  21. Markov, R.A.S., and B. Sendov. 2006. On the normed linear space of Hausdorff continuous functions. In Large-scale scientific computing, Lecture Notes in Computer Science 3742, pp. 281–288, Springer.

  22. Markov, R.A.S., and B. Sendov. 2006. The set of Hausdorff continuous functions - the largest linear space of interval functions. Reliable Computing 12: 337–363.

    Article  MathSciNet  Google Scholar 

  23. Michael, E. 2004. d-12 Paracompact spaces. In Enclycopedia of general topology, ed. Hart et al., pp. 195–198. Elsevier.

  24. Mimna, R., and E. Wingler. 1998. Locally bounded functions. Real Analysis Exchange 23: 251–258.

    Article  MathSciNet  Google Scholar 

  25. Moore, R. 1966. Interval analysis. Englewood Cliff: Prentice Hall.

    MATH  Google Scholar 

  26. Nagami, K. 1954. Baire sets, borel sets and some typical semicontinuous functions. Nagoya Mathematical Journal 7: 85–93.

    Article  MathSciNet  Google Scholar 

  27. Oberguggenberger, M., and E. Rosinger. 1994. Solution of continuous nonlinear PDEs through order completion. Amsterdam: North-Holland.

  28. Ruzhansky, M., Y.J. Cho, P. Agarwal, and I. Area. 2017. Advances in real and complex analysis with applications. Singapore: Birkhäuser.

    Book  Google Scholar 

  29. Tietze, H. 1914. Uber Funktionen, Die Auf Einer Abgeschlossenen Menge Stetig Sind. Fur Die Reine Und Angewandte Mathematik 145: 9–14.

    MATH  Google Scholar 

  30. Tong, H. 1952. Some characterizations of normal and perfectly normal spaces. Duke Mathematical Journal 19: 289–292.

    Article  MathSciNet  Google Scholar 

  31. van der Walt, J. 2017. Vector-valued interval functions and the dedekind completion of C(X, E). Positivity 21: 1143–1159.

    Article  MathSciNet  Google Scholar 

  32. Zink, R. 1965. On semicontinuous functions and Baire functions. Transactions of the American Mathematical Society 117: 1–9.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

With thanks to the staff of the library of Finale Emilia (MO), Italy, “Biblioteca Comunale di Finale Emilia”, without whose frequent and over-used help in obtaining sometimes difficult to obtain references this paper would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Watson.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Communicated by Samy Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, R. Product ordered Hausdorff continuous \(\mathbb {R}^{n}\)-interval functions. J Anal 30, 749–783 (2022). https://doi.org/10.1007/s41478-021-00368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-021-00368-9

Keywords

Mathematics Subject Classification

Navigation