Skip to main content
Log in

Fekete–Szegö problem for some subclasses of bi-univalent functions

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

Certain new subclasses of bi-univalent analytic functions are introduced in this paper using the concept of subordination. Non-sharp bounds for the Fekete–Szegö functional are found. The results of this paper generalize several recently obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu Muhanna Y., L. Li, S. Ponnusamy. 2014. Extremal problems on the class of convex functions of order \(-\frac{1}{2}\). Arch. Math. (Basel) 103(6): 461–471.

    MathSciNet  MATH  Google Scholar 

  2. Agrawal, S., S. K. Sahoo. 2018. On the coefficient functionals associated with the Zalcman conjecture. J. Classical Anal. 13(2), 95–105.

    Article  MathSciNet  Google Scholar 

  3. Ali, R. M., S. K. Lee, V. Ravichandran, S. Supramaniam. 2012. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 25: 344–351.

    Article  MathSciNet  Google Scholar 

  4. Al-Hawary T., B. A. Frasin, M. Darus. 2014. Fekete-Szegö problem for certain classes of analytic functions of complex order defined by the Dziok-Srivastava operator. Acta Mathematica Vietnamica 39 (2): 185–192.

    Article  MathSciNet  Google Scholar 

  5. Barik, S. 2015. Estimates for initial coefficients in subclasses of bi-univalent functions. Ph. D. Thesis, India: Berhampur University.

  6. Bhowmik, B., S. Ponnusamy, K.-J. Wirths. 2011. On the Fekete-Szegö problem for concave univalent functions. J. Math. Anal. Appl. 373(2), 432–438.

    Article  MathSciNet  Google Scholar 

  7. Brannan, D.A., and J.G. Cluine (eds.). 1980. Aspects of Contemporary Complex Analysis. Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1–20, 1979. New York and London: Academic Press.

  8. Brannan, D.A., and T.S. Taha. 1986. On some classes of bi-univalent functions. In Mathematical Analysis and its Applications, eds. S.M. Mazhar, A. Hamoui, N.S. Faour, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, Vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1998, pp. 53 - 60. See also Studia Univ. Babes-Bolyai Math. 31 (2): 70–77.

  9. Bulut, S. 2013. Fekete-Szegö problem for subclasses of analytic functions defined by Komatu integral operator. Arabian J. of Math., 2: 177–183.

    Article  MathSciNet  Google Scholar 

  10. Duren, P.L. 1983. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften. Band 259, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag.

  11. Fekete, M., G. Szegö, 1933. Eine Bemerkung über ungerade schlichte Funktionen. J. London Math. Soc. 8 : 85–89.

    Article  Google Scholar 

  12. Frasin, B. A., M. K. Aouf. 2011. New subclasses of bi-univalent functions. Appl. Math. Lett. 24: 1569–1573.

    Article  MathSciNet  Google Scholar 

  13. Goodman, A.W. 1983. Univalent Functions Vol. I. Mariner Publishing Co. Inc.

  14. Goodman, A. W. 1991. On uniformly convex functions. Ann. Polon. Math. 56: 87–92.

    Article  MathSciNet  Google Scholar 

  15. Jahangiri, J. M., N. Magesh, J. Yamini. 2015. Fekete-Szegö inequality for classes of bi-starlike and bi-convex functions. Elect. J. Math. Anal. Appl. 3(1), 133–140.

    MATH  Google Scholar 

  16. Kanas, S., A. Wisniowska. 1999. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 105: 327–336.

    Article  MathSciNet  Google Scholar 

  17. Kanas, S. 2005. Coefficient estimates in subclasses of the Caratheodory class related to conical domains. Acta Math. Univ. Comenian. LXXIV 2: 149–161.

    MathSciNet  MATH  Google Scholar 

  18. Kanasa, S., H. E. Darwish. 2010. The Fekete-Szegö problem for starlike and convex functions of complex order. Appl. Math. lett. 23: 777–782.

    Article  MathSciNet  Google Scholar 

  19. Koepf, W. 1987. On the Fekete-Szegö problem for close-to-convex functions. Proc. Amer. Math. Soc. 101(1), 89–95.

    MATH  Google Scholar 

  20. Koepf, W. 1987. On the Fekete-Szegö problem for close-to-convex functions II. Arch. Math. (Basel) 49(5): 420–433.

    Article  MathSciNet  Google Scholar 

  21. Lewin, M. 1967. On the coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 18: 63–68.

    Article  MathSciNet  Google Scholar 

  22. Li, L., S. Ponnusamy. 2014. Generalized Zalcman conjecture for convex functions of order \(-\frac{1}{2}\). J. Anal. 22: 77–87.

    MathSciNet  MATH  Google Scholar 

  23. Li, L., S. Ponnusamy. 2017. On the generalized Zalcman functional \(\lambda a^2_n - a_{2n-1}\) in the close- to-convex family. Proc. Amer. Math. Soc. 145: 833–846.

    Article  Google Scholar 

  24. Li, L., S. Ponnusamy, J. Qiao. 2016. Generalized Zalcman conjecture for convex functions of order alpha. Acta Math. Hungar. 150(1), 234–246.

    Article  MathSciNet  Google Scholar 

  25. Ma, W., D. Minda. 1993. Uniformly convex functions II. Ann. Polon. Math. 58: 275–285.

    Article  MathSciNet  Google Scholar 

  26. Mishra, A. K., P. Gochhayat. 2008. The Fekete-Szegö problem for k-uniformly convex functions and for a class defined by the Owa-Srivastava operator. J. Math. Anal. Appl. 347: 563–572.

    Article  MathSciNet  Google Scholar 

  27. Mishra, A.K., M. M. Soren. 2014. Coefficient bounds for bi-starlike analytic functions. Bull. Belg. Math. Soc. Simon Stevin. 21: 157–167.

    Article  MathSciNet  Google Scholar 

  28. Mishra, A. K., S. Barik. 2015. Estimation for initial coefficients of bi-univalent lambda-convex functions in the unit disc. J. Classical Anal. 7(1), 73–81.

    Article  MathSciNet  Google Scholar 

  29. Mishra, A. K., S. Barik. 2016. Estimation for initial coefficients of certain lambda bi-starlike functions. Asian European J. of Math. 09 (3): 1650066.

    Article  Google Scholar 

  30. Natanyahu, E. 1969. The minimal distance of image boundary from the origin and the second coefficient of a univalent function in \(|z|<1\). Arch. Rational Mech. Anal. 32: 100–112.

    Article  MathSciNet  Google Scholar 

  31. Obradović, M., S. Ponnusamy, K.-J. Wirths. 2016. Geometric studies on the class \(\cal{U}(\lambda )\). Bull. Malays. Math. Sci. Soc. 39(3), 1259–1284.

    Article  MathSciNet  Google Scholar 

  32. Orhan, H., D. Rŏducanu. 2009. Fekete-Szegö problem for strongly starlike functions associated with generalized hypergeometric functions. Math. Comput. Model. 50: 430–438.

    Article  Google Scholar 

  33. Peng, Z., H. Han. 2014. On the coefficients of several classes of bi-univalent functions. Acta Math. Scientia, 34B(1), 228–240.

    Article  MathSciNet  Google Scholar 

  34. Pfluger, A. 1985. The Fekete-Szegö inequality by a variational method. Ann. Acad. Sci. Fenn. Ser. A I Math. 10: 447–454.

    Article  MathSciNet  Google Scholar 

  35. Pfluger, A. 1986. The Fekete-Szegö inequality for complex parameters. Complex Variables Theory Appl. 7(1–3), 149–160.

    MATH  Google Scholar 

  36. Sharma, P., Ankita, and R.K. Raina. 2013. Coefficient estiamte and Fekete-Szegö inequality for a unified class of bi-univalent functions. Math. Sci. Res. J. 17: 292–299.

  37. Sokól, J., J. Stankiewicz. 1996. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19: 101–105.

    MathSciNet  MATH  Google Scholar 

  38. Srivastava, H. M., A. K. Mishra, M. K. Das. 1998. A nested class of analytic functions defined by fractional calculus. Commun. Appl. Anal. 2 (3): 321–332.

    MathSciNet  MATH  Google Scholar 

  39. Srivastava, H. M., A. K. Mishra. 2000. Applications of fractional calculus to parabolic starlike and uniformly convex functions. Comput. Math. Appl. 39 (34): 57–69.

    Article  MathSciNet  Google Scholar 

  40. Srivastava, H. M., A. K. Mishra, M. K. Das. 2001. The Fekete-Szegö problem for a subclass of close-to-convex functions. Complex Variable 44 : 145–163.

    MATH  Google Scholar 

  41. Srivastava, H. M., A. K. Mishra, P. Gochhayat. 2010. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23: 1188–1192.

    Article  MathSciNet  Google Scholar 

  42. Taha, T.S. 1981. Topics in Univalent Function Theory, Ph. D. Thesis, University of London.

  43. Zaprawa, P. 2014. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 21: 169–178.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their valuable comments and suggestions which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madan Mohan Soren.

Ethics declarations

Conflict of interest

Madan Mohan Soren declares that he has no conflict of interest. Sarbeswar Barik declares that he has no conflict of interest. Aksaya Kumar Mishra declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study has no funding agencies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soren, M.M., Barik, S. & Mishra, A.K. Fekete–Szegö problem for some subclasses of bi-univalent functions. J Anal 29, 147–162 (2021). https://doi.org/10.1007/s41478-020-00252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-020-00252-y

Keywords

Mathematics Subject Classification

Navigation