Skip to main content
Log in

On the oscillation of fractional Emden–Fowler type neutral partial differential equations

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider a new class of boundary value problem associated with fractional Emden–Fowler type neutral partial differential equations of the form

$$ \begin{gathered} D_{{ + ,t}}^{\alpha } \left[ {r(t)D_{{ + ,t}}^{\alpha } \left( {u(x,t) + p(t)u(x,t - \tau )} \right)} \right] + q(x,t)\left| {u(x,\sigma (t))} \right|^{{\gamma - 1}} u(x,\sigma (t)) \hfill \\ = a(t)\Delta u(x,t) + F(x,t),~~(x,t) \in \Omega \times \mathbb{R}_{ + } = G,{\text{ }} \hfill \\ \end{gathered} $$

\(\int \nolimits _{t_0}^{\infty }\dfrac{dt}{r(t)}<\infty \). We will establish the sufficient conditions for the oscillation of given system by using the generalized Riccati technique and integral averaging method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das, S. 2008. Functional fractional calculus for system identification and controls. Newyork: Springer.

    MATH  Google Scholar 

  2. Kilbas, A.A., H.M. Srivastava, and J.J. Trujillo. 2006. Theory and applications of fractional differential equations, vol. 204. Amsterdam: Elsevier Science B.V.

    Book  Google Scholar 

  3. Samko, S.G., A.A. Kilbas, and O.I. Marichev. 1993. Fractional integrals and derivatives: theory and applications. Amsterdam: Elsevier.

    MATH  Google Scholar 

  4. Vasily, E. 2010. Fractional dynamics. Beijing: Higher eduction press,

    MATH  Google Scholar 

  5. Zhou, Y. 2014. Basic theory of fractional differential equations. Singapore: World Scientific.

    Book  Google Scholar 

  6. Bagley, R.L., and P.J. Torvik. 1983. A theoritical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology 27: 201–210.

    Article  Google Scholar 

  7. Baillie, R.T. 1996. Long memory processes and fractional integration in econometrics. Journal of Econometrics 73: 5–59.

    Article  MathSciNet  Google Scholar 

  8. Denton, Z., and A.S. Vatsala. 2010. Fractional integral inequalities and applications. Computers and Mathematics with Applications 59: 1087–1094.

    Article  MathSciNet  Google Scholar 

  9. Diethelm, K., and N.J. Ford. 2002. Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications 265: 229–248.

    Article  MathSciNet  Google Scholar 

  10. Mainardi, F. 1997. Fractional calculus some basic problems in continuum and statistical mechanics. In Fractals and fractional calculus in continuum mechanics, vol. 265, ed. A. Carpinteri, and F. Mainardi, 291–348. Newyork: Springer.

    Chapter  Google Scholar 

  11. Magin, R.L. 2004. Fractional calculus in bioengineering. Critical ReviewsTM, Biomedical Engineering 32: 1–377.

    Article  Google Scholar 

  12. Mandelbrot, B. 1967. Some noises with \(\frac{1}{f}\) spectrum, a brige between direct current and white noise. IEEE Transactions and Information Theory 13: 289–298.

    Article  Google Scholar 

  13. Rossikhin, Y.A., and M.V. Shitikova. 1997. Applications to fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Applied Mechanics Reviews 50: 15–67.

    Article  Google Scholar 

  14. Baleanu, D., O.G. Mustafa, and D. O’Regan. 2015. A Kamenev oscillation result for a linear \((1+\alpha )\)-order fractional differential equations. Applied Mathematics and Computation 259: 374–378.

    Article  MathSciNet  Google Scholar 

  15. Chen, D.X. 2013. Oscillatory behavior of a class of fractional differential equations with damping. UPB Scientific Bulletin Series A 75: 107–118.

    MathSciNet  MATH  Google Scholar 

  16. Wang, Y., Z. Han, and S. Sun. 2014. Comment on ’On the Oscillation of Fractional-order Delay Differential Equations with Constant Coefficients’. Communication in Nonlinear Science 19 (11): 3988–3993.

    Article  Google Scholar 

  17. Wang, Yi-Zhou, Zhen-Lai Han, Ping Zhao, and Shu-Rong Sun. 2015. Oscillation theorems for fractional neutral differential equations. Hacettepe Journal of Mathematics and Statistics 44: 1477–1488.

    MathSciNet  MATH  Google Scholar 

  18. Yang, J., A. Li, and T. Liu. 2015. Forced oscillation of nonlinear fractional differential equations with damping term. Advances in Difference Equations 1: 1–7.

    Article  MathSciNet  Google Scholar 

  19. Prakash, P., S. Harikrishnan, and M. Benchohra. 2015. Oscillation of certain nonlinear fractional partial differentialequation with damping term. Applied Mathematics Letters 43: 72–79.

    Article  MathSciNet  Google Scholar 

  20. Sadhasivam, V., and J. Kavitha. 2015. Forced oscillation of solutions of a fractional neutral partial functional differential equation. Applied Mathematics, Scientific Research publishing 6: 1302–1317.

    Google Scholar 

  21. Sadhasivam, V., and J. Kavitha. 2016. Forced oscillation of fractional order partial differential equations with damping and functional arguments. International Journal of Pure and Applied Mathematics 106: 89–107.

    Google Scholar 

  22. Wei Nian Li. 2016. Oscillation of solutions for certain fractional partial differential equations. Advances in Difference Equations 16: 1–8.

    MathSciNet  MATH  Google Scholar 

  23. Driver, D.R. 1984. A mixed neutral systems. Nonlinear Analysis 8: 155–158.

    Article  MathSciNet  Google Scholar 

  24. Hale, J.K. 1977. Theory of functional differential equations. Newyork: Springer.

    Book  Google Scholar 

  25. Saker, S.H., and J.V. Manojlovic. 2004. Oscillation criteria for second superlinear neutral delay differential equations. Electronic Journal of Qualitative Theory of Differential Equation 10: 1–22.

    Article  MathSciNet  Google Scholar 

  26. Han, Z., T. Li, S. Sun, and Y. Sun. 2010. Remarks on the paper. Applied Mathematics and Computation 215: 3998–4007.

    Article  MathSciNet  Google Scholar 

  27. Li, T., Z. Han, C. Zhang, and S. Sun. 2011. On the oscillation of second-order emden-fowler neutral differential equations. Journal of Applied Mathematics and Computation 37: 601–610.

    Article  MathSciNet  Google Scholar 

  28. Agarwal, R.P., M. Bohner, T. Li, and C. Zhang. 2014. Oscillation of second order emden-fowler neutral delay differential equations. Annaali di Mathematica 193: 1861–1875.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the referees for their valuable suggestions for the improvement of the paper. The authors also thank Prof.E. Thandapani for his support to complete the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sadhasivam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhasivam, V., Kavitha, J. On the oscillation of fractional Emden–Fowler type neutral partial differential equations. J Anal 27, 741–759 (2019). https://doi.org/10.1007/s41478-018-0124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-018-0124-3

Keywords

Mathematics Subject Classification

Navigation