Skip to main content
Log in

α Decay in extreme laser fields within a deformed Gamow-like model

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, the effect of extreme laser fields on the \(\alpha\) decay process of ground-state even–even nuclei was investigated. Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the \(\alpha\) decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the \(\alpha\) decay penetration probability and angle between the directions of the laser electric field and \(\alpha\) particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary \(\alpha\) particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the \(\alpha\) decay penetration probability of the nuclei population with completely random \(\alpha\) particle-emission directions are not completely canceled. The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the \(\alpha\) decay half-life of the nuclei population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility

The data that support the findings of this study are openly available in Science Data Bank at  https://cstr.cn/31253.11.sciencedb.j00186.00358 and .

References

  1. J.G. Deng, H.F. Zhang, X.D. Sun, New behaviors of \({\alpha }\)-particle preformation factors near doubly magic 100Sn*. Chin. Phys. C 46, 061001 (2022). https://doi.org/10.1088/1674-1137/ac5a9f

    Article  ADS  Google Scholar 

  2. J.G. Deng, H.F. Zhang, Probing the robustness of \(N=126\) shell closure via the \(\cal{\alpha } \) decay systematics. Eur. Phys. J. A 58, 165 (2022). https://doi.org/10.1140/epja/s10050-022-00813-8

    Article  ADS  Google Scholar 

  3. D.M. Deng, Z.Z. Ren, Systematics of \(\alpha \)-preformation factors in closed-shell regions. Nucl. Sci. Tech. 27, 150 (2016). https://doi.org/10.1007/s41365-016-0151-1

    Article  Google Scholar 

  4. N. Wan, C. Xu, Z.Z. Ren, Exploring the sensitivity of \(\alpha \)-decay half-life to neutron skin thickness for nuclei around \(^{208}\text{ Pb }\). Nucl. Sci. Tech. 28, 22 (2016). https://doi.org/10.1007/s41365-016-0174-7

    Article  Google Scholar 

  5. G. Gamow, Zur quantentheorie des atomkernes. Z. Phys. 51, 204 (1928). https://doi.org/10.1007/BF01343196

    Article  ADS  Google Scholar 

  6. R.W. Gurney, E.U. Condon, Wave mechanics and radioactive disintegration. Nature 122, 439 (1928). https://doi.org/10.1038/122439a0

    Article  ADS  Google Scholar 

  7. D.S. Delion, Universal decay rule for reduced widths. Phys. Rev. C 80, 024310 (2009). https://doi.org/10.1103/PhysRevC.80.024310

    Article  ADS  Google Scholar 

  8. K.P. Santhosh, S. Sahadevan, B. Priyanka et al., Systematic study of heavy cluster emission from 210–226Ra isotopes. Nucl. Phys. A 882, 49 (2012). https://doi.org/10.1016/j.nuclphysa.2012.04.001

    Article  ADS  Google Scholar 

  9. J.M. Dong, H.F. Zhang, G. Royer, Proton radioactivity within a generalized liquid drop model. Phys. Rev. C 79, 054330 (2009). https://doi.org/10.1103/PhysRevC.79.054330

    Article  ADS  Google Scholar 

  10. X.J. Bao, S.Q. Guo, H.F. Zhang et al., Competition between \({\alpha }\)-decay and spontaneous fission for super heavy nuclei. J. Phys. G Nucl. Part. Phys. 42, 085101 (2015). https://doi.org/10.1088/0954-3899/42/8/085101

    Article  ADS  Google Scholar 

  11. A.N. Andreyev, M. Huyse, P. Van Duppen et al., Signatures of the \(Z = 82\) shell closure in \({\alpha }\)-decay process. Phys. Rev. Lett. 110, 242502 (2013). https://doi.org/10.1103/PhysRevLett.110.242502

    Article  ADS  Google Scholar 

  12. Y.T. Oganessian, F.S. Abdullin, P.D. Bailey et al., Synthesis of a new element with atomic number \(Z\mathbf{=} 117\). Phys. Rev. Lett. 104, 142502 (2010). https://doi.org/10.1103/PhysRevLett.104.142502

    Article  ADS  Google Scholar 

  13. A. Sobiczewski, K. Pomorski, Description of structure and properties of superheavy nuclei. Prog. Part. Nucl. Phys. 58, 292 (2007). https://doi.org/10.1016/j.ppnp.2006.05.001

    Article  ADS  Google Scholar 

  14. A.B. Balantekin, N. Takigawa, Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 70, 77 (1998). https://doi.org/10.1103/RevModPhys.70.77

    Article  ADS  Google Scholar 

  15. H.C. Manjunatha, N. Sowmya, P.S. Damodara Gupta et al., Investigation of decay modes of superheavy nuclei. Nucl. Sci. Tech. 32, 130 (2021). https://doi.org/10.1007/s41365-021-00967-y

    Article  Google Scholar 

  16. Y.Q. Xin, N.N. Ma, J.G. Deng et al., Properties of \(Z=114\) super-heavy nuclei. Nucl. Sci. Tech. 32, 55 (2021). https://doi.org/10.1007/s41365-021-00899-7

    Article  Google Scholar 

  17. Y.J. Ren, Z.Z. Ren, New Geiger–Nuttall law for \({\alpha }\) decay of heavy nuclei. Phys. Rev. C 85, 044608 (2012). https://doi.org/10.1103/PhysRevC.85.044608

    Article  ADS  Google Scholar 

  18. T.K. Dong, Z.Z. Ren, New calculations of \(\alpha \)-decay half-lives by the Viola–Seaborg formula. Eur. Phys. J. A 26, 69 (2005). https://doi.org/10.1140/epja/i2005-10142-y

    Article  ADS  Google Scholar 

  19. H.B. Yang, Z.G. Gan, Z.Y. Zhang et al., New isotope \(^{207}{{\rm Th}} \) and odd-even staggering in \({\alpha }\)decay energies for nuclei with \(Z f{<} 82\) and \(N {>} 126\). Phys. Rev. C 105, L051302 (2022). https://doi.org/10.1103/PhysRevC.105.L051302

    Article  ADS  Google Scholar 

  20. H.B. Yang, Z.G. Gan, Z.Y. Zhang et al., \({\alpha }\) decay of the new isotope \(^{204}{{\rm Ac}} \). Phys. Lett. B 834, 137484 (2022). https://doi.org/10.1016/j.physletb.2022.137484

    Article  Google Scholar 

  21. L.X. Chen, S.Y. Xu, Z.Y. Zhang et al., Reaction \(^{55}{{\rm Mn}}\) + \(^{159}{\rm Tb}\): preparation for the synthesis of new elements*. Chin. Phys. C 47, 054001 (2023). https://doi.org/10.1088/1674-1137/acb9e2

    Article  ADS  Google Scholar 

  22. N. Kinoshita, M. Paul, Y. Kashiv et al., RRETRACTED: a shorter \(^{146}{\rm Sm}\) half-life measured and implications for \(^{146}{\rm Sm}\)-\(^{142}{\rm Nd} \) chronology in the solar system. Science 335, 1614 (2012). https://doi.org/10.1126/science.1215510

    Article  ADS  Google Scholar 

  23. H.O.U. Fynbo, C.A. Diget, U.C. Bergmann et al., Revised rates for the stellar triple-\({\alpha }\) process from measurement of \(^{12}{\rm C }\) nuclear resonances. Nature 433, 136 (2005). https://doi.org/10.1038/nature03219

    Article  ADS  Google Scholar 

  24. J.G. Deng, H.F. Zhang, Correlation between \({\alpha }\)-particle preformation factor and \({\alpha }\) decay energy. Phys. Lett. B 816, 136247 (2021). https://doi.org/10.1016/j.physletb.2021.136247

    Article  Google Scholar 

  25. Y.Z. Wang, J.Z. Gu, Z.Y. Hou, Preformation factor for \({\alpha }\) particles in isotopes near \(N=Z\). Phys. Rev. C 89, 047301 (2014). https://doi.org/10.1103/PhysRevC.89.047301

    Article  ADS  Google Scholar 

  26. H.F. Zhang, W. Zuo, J.Q. Li et al., \({\alpha }\) decay half-lives of new superheavy nuclei within a generalized liquid drop model. Phys. Rev. C 74, 017304 (2006). https://doi.org/10.1103/PhysRevC.74.017304

    Article  ADS  Google Scholar 

  27. M. Gonçalves, S.B. Duarte, Effective liquid drop description for the exotic decay of nuclei. Phys. Rev. C 48, 2409 (1993). https://doi.org/10.1103/PhysRevC.48.2409

    Article  ADS  Google Scholar 

  28. J.G. Deng, H.F. Zhang, Systematic study of \({\alpha }\) decay half-lives within the generalized liquid drop model with various versions of proximity energies*. Chin. Phys. C 45, 024104 (2021). https://doi.org/10.1088/1674-1137/abcc5a

    Article  ADS  Google Scholar 

  29. A. Zdeb, M. Warda, K. Pomorski, Half-lives for \({\alpha }\) and cluster radioactivity within a Gamow-like model. Phys. Rev. C 87, 024308 (2013). https://doi.org/10.1103/PhysRevC.87.024308

    Article  ADS  Google Scholar 

  30. A. Zdeb, M. Warda, K. Pomorski, Half-lives for \(\alpha \) and cluster radioactivity in a simple model. Phys. Scr. T154, 014029 (2013). https://doi.org/10.1088/0031-8949/2013/T154/014029

    Article  ADS  Google Scholar 

  31. J.H. Cheng, J.L. Chen, J.G. Deng et al., Systematic study of \(\alpha \) decay half-lives based on Gamow-like model with a screened electrostatic barrier. Nucl. Phys. A 987, 350 (2019). https://doi.org/10.1016/j.nuclphysa.2019.05.002

    Article  ADS  Google Scholar 

  32. B. Buck, A.C. Merchant, S.M. Perez, New look at \({\alpha }\) decay of heavy nuclei. Phys. Rev. Lett. 65, 2975 (1990). https://doi.org/10.1103/PhysRevLett.65.2975

    Article  ADS  Google Scholar 

  33. C. Xu, Z.Z. Ren, Global calculation of \({\alpha }\)-decay half-lives with a deformed density-dependent cluster model. Phys. Rev. C 74, 014304 (2006). https://doi.org/10.1103/PhysRevC.74.014304

    Article  ADS  Google Scholar 

  34. C. Xu, Z.Z. Ren, Favored \(\alpha \)-decays of medium mass nuclei in density-dependent cluster model. Nucl. Phys. A 760, 303 (2005). https://doi.org/10.1016/j.nuclphysa.2005.06.011

    Article  ADS  Google Scholar 

  35. X.D. Sun, P. Guo, X.H. Li, Systematic study of \({\alpha }\) decay half-lives for even-even nuclei within a two-potential approach. Phys. Rev. C 93, 034316 (2016). https://doi.org/10.1103/PhysRevC.93.034316

    Article  ADS  Google Scholar 

  36. J.G. Deng, J.C. Zhao, D. Xiang et al., Systematic study of unfavored \({\alpha }\)-decay half-lives of closed-shell nuclei related to ground and isomeric states. Phys. Rev. C 96, 024318 (2017). https://doi.org/10.1103/PhysRevC.96.024318

    Article  ADS  Google Scholar 

  37. J.G. Deng, J.C. Zhao, P.C. Chu et al., Systematic study of \({\alpha }\) decay of nuclei around the \(Z=82, N=126\) shell closures within the cluster-formation model and proximity potential 1977 formalism. Phys. Rev. C 97, 044322 (2018). https://doi.org/10.1103/PhysRevC.97.044322

    Article  ADS  Google Scholar 

  38. C. Xu, Z.Z. Ren, New deformed model of \({\alpha }\)-decay half-lives with a microscopic potential. Phys. Rev. C 73, 041301 (2006). https://doi.org/10.1103/PhysRevC.73.041301

    Article  ADS  Google Scholar 

  39. M. Ismail, W.M. Seif, A. Adel et al., Alpha-decay of deformed superheavy nuclei as a probe of shell closures. Nucl. Phys. A 958, 202 (2017). https://doi.org/10.1016/j.nuclphysa.2016.11.010

    Article  ADS  Google Scholar 

  40. Z.Z. Ren, C. Xu, Theoretical calculations on \({\alpha }\)-decay half-lives by the density-dependent cluster model. Mod. Phys. Lett. A 23, 2597 (2008). https://doi.org/10.1142/S0217732308029885

    Article  ADS  Google Scholar 

  41. D.D. Ni, Z.Z. Ren, T.K. Dong et al., Unified formula of half-lives for \({\alpha }\) decay and cluster radioactivity. Phys. Rev. C 78, 044310 (2008). https://doi.org/10.1103/PhysRevC.78.044310

    Article  ADS  Google Scholar 

  42. V.E. Viola, G.T. Seaborg, Nuclear systematics of the heavy elements-II Lifetimes for alpha, beta and spontaneous fission decay. J. Inorg. Nucl. Chem. 28, 741 (1966). https://doi.org/10.1016/0022-1902(66)80412-8

    Article  Google Scholar 

  43. G. Royer, Alpha emission and spontaneous fission through quasi-molecular shapes. J. Phys. G Nucl. Part. Phys. 26, 1149 (2000). https://doi.org/10.1088/0954-3899/26/8/305

    Article  ADS  Google Scholar 

  44. C. Qi, F.R. Xu, R.J. Liotta et al., Microscopic mechanism of charged-particle radioactivity and generalization of the Geiger–Nuttall law. Phys. Rev. C 80, 044326 (2009). https://doi.org/10.1103/PhysRevC.80.044326

    Article  ADS  Google Scholar 

  45. C. Qi, F.R. Xu, R.J. Liotta et al., Universal Decay law in charged-particle emission and exotic cluster radioactivity. Phys. Rev. Lett. 103, 072501 (2009). https://doi.org/10.1103/PhysRevLett.103.072501

    Article  ADS  Google Scholar 

  46. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Single universal curve for cluster radioactivities and \({\alpha }\) decay. Phys. Rev. C 83, 014601 (2011). https://doi.org/10.1103/PhysRevC.83.014601

    Article  ADS  Google Scholar 

  47. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219 (1985). https://doi.org/10.1016/0030-4018(85)90120-8

    Article  ADS  Google Scholar 

  48. R. Betti, O.A. Hurricane, Inertial-confinement fusion with lasers. Nat. Phys. 12, 435 (2016). https://doi.org/10.1038/nphys3736

    Article  Google Scholar 

  49. M.J.C. van Gemert, A.J. Welch, Time constants in thermal laser medicine. Laser. Surg. Med. 9, 405 (1989). https://doi.org/10.1002/lsm.1900090414

    Article  Google Scholar 

  50. N.V. Zamfir, Nuclear physics with 10 PW laser beams at extreme light infrastructure-nuclear physics (ELI-NP). Eur. Phys. J. Spec. Top. 223, 1221 (2014). https://doi.org/10.1140/epjst/e2014-02176-0

    Article  Google Scholar 

  51. B.S. Xie, Z.L. Li, S. Tang, Electron-positron pair production in ultrastrong laser fields. Matter Radiat. Extrem. 2, 225 (2017). https://doi.org/10.1016/j.mre.2017.07.002

    Article  Google Scholar 

  52. S.N. Chen, F. Negoita, K. Spohr et al., Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory. Matter Radiat. Extrem. 4, 054402 (2019). https://doi.org/10.1063/1.5081666

    Article  Google Scholar 

  53. S.M. Weng, Z.M. Sheng, M. Murakami et al., Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition. Matter Radiat. Extrem. 3, 28 (2018). https://doi.org/10.1016/j.mre.2017.09.002

    Article  Google Scholar 

  54. J.W. Yoon, Y.G. Kim, I.W. Choi et al., Realization of laser intensity over \(10^{23} {\rm W}/\text{cm}^{2}\). Optica 8, 630 (2021). https://doi.org/10.1364/OPTICA.420520

    Article  ADS  Google Scholar 

  55. Ş Mişicu, M. Rizea, Laser-assisted proton radioactivity of spherical and deformed nuclei. J. Phys. G Nucl. Part. Phys. 46, 115106 (2019). https://doi.org/10.1088/1361-6471/ab1d7c

    Article  ADS  Google Scholar 

  56. K.A. Tanaka, K.M. Spohr, D.L. Balabanski et al., Current status and highlights of the ELI-NP research program. Matter Radiat. Extrem. 5, 024402 (2020). https://doi.org/10.1063/1.5093535

    Article  Google Scholar 

  57. G.M. Maria, Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. Lpz. 401, 273 (1931). https://doi.org/10.1002/andp.19314010303

    Article  ADS  Google Scholar 

  58. J.T. Qi, L.B. Fu, X. Wang, Nuclear fission in intense laser fields. Phys. Rev. C 102, 064629 (2020). https://doi.org/10.1103/PhysRevC.102.064629

    Article  ADS  Google Scholar 

  59. W. Wang, J. Zhou, B.Q. Liu et al., Exciting the isomeric \(^{229}{{\rm Th}} \) nuclear state via laser-driven electron recollision. Phys. Rev. Lett. 127, 052501 (2021). https://doi.org/10.1103/PhysRevLett.127.052501

    Article  ADS  Google Scholar 

  60. W.J. Lv, H. Duan, J. Liu, Enhanced deuterium-tritium fusion cross sections in the presence of strong electromagnetic fields. Phys. Rev. C 100, 064610 (2019). https://doi.org/10.1103/PhysRevC.100.064610

    Article  ADS  Google Scholar 

  61. S.A. Ghinescu, D.S. Delion, Coupled-channels analysis of the \(\alpha \) decay in strong electromagnetic fields. Phys. Rev. C 101, 044304 (2020). https://doi.org/10.1103/PhysRevC.101.044304

    Article  ADS  Google Scholar 

  62. S.W. Liu, H. Duan, D.F. Ye et al., Deuterium-tritium fusion process in strong laser fields: semiclassical simulation. Phys. Rev. C 104, 044614 (2021). https://doi.org/10.1103/PhysRevC.104.044614

    Article  ADS  Google Scholar 

  63. J. Feng, W.Z. Wang, C.B. Fu et al., Femtosecond pumping of nuclear isomeric states by the Coulomb collision of ions with quivering electrons. Phys. Rev. Lett. 128, 052501 (2022). https://doi.org/10.1103/PhysRevLett.128.052501

    Article  ADS  Google Scholar 

  64. Ş Mişicu, the refractive scattering of loosely bound nuclei in arbitrarily polarized laser fields. Phys. Rev. C 106, 034612 (2022). https://doi.org/10.1103/PhysRevC.106.034612

    Article  ADS  Google Scholar 

  65. H.M.C. Cortés, C. Müller, C.H. Keitel et al., Nuclear recollisions in laser-assisted \({\alpha }\) decay. Phys. Lett. B 723, 401 (2013). https://doi.org/10.1016/j.physletb.2013.05.025

    Article  ADS  Google Scholar 

  66. Ş Mişicu, M. Rizea, \({\alpha }\)-Decay in ultra-intense laser fields. J. Phys. G Nucl. Part. Phys. 40, 095101 (2013). https://doi.org/10.1088/0954-3899/40/9/095101

    Article  ADS  Google Scholar 

  67. Ş Mişicu, M. Rizea, Speeding of \({\alpha }\) decay in strong laser fields. Open Phys. 14, 81 (2016). https://doi.org/10.1515/phys-2016-0001

    Article  Google Scholar 

  68. J.T. Qi, T. Li, R.H. Xu et al., \({\alpha }\) decay in intense laser fields: calculations using realistic nuclear potentials. Phys. Rev. C 99, 044610 (2019). https://doi.org/10.1103/PhysRevC.99.044610

    Article  ADS  Google Scholar 

  69. D.P. Kis, R. Szilvasi, Three dimensional \({\alpha }\)-tunneling in intense laser fields. J. Phys. G Nucl. Part. Phys. 45, 045103 (2018). https://doi.org/10.1088/1361-6471/aab0d5

    Article  ADS  Google Scholar 

  70. D. Bai, Z.Z. Ren, \({\alpha }\) Decays in superstrong static electric fields*. Commun. Theor. Phys. 70, 559 (2018). https://doi.org/10.1088/0253-6102/70/5/559

    Article  MathSciNet  ADS  Google Scholar 

  71. J.H. Cheng, W.Y. Zhang, Q. Xiao et al., Laser-assisted deformed \({\alpha }\) decay of the ground state even-even nuclei (2023). arXiv preprint arXiv:2307.02095. https://doi.org/10.48550/arXiv.2307.02095

  72. J.H. Cheng, Y. Li, T.P. Yu, Systematic study of laser-assisted proton radioactivity from deformed nuclei. Phys. Rev. C 105, 024312 (2022). https://doi.org/10.1103/PhysRevC.105.024312

    Article  ADS  Google Scholar 

  73. F. Queisser, R. Schützhold, Dynamically assisted nuclear fusion. Phys. Rev. C 100, 041601 (2019). https://doi.org/10.1103/PhysRevC.100.041601

    Article  ADS  Google Scholar 

  74. Ş Mişicu, F. Carstoiu, Fraunhofer and refractive scattering of heavy ions in strong laser fields. Eur. Phys. J. A 54, 90 (2018). https://doi.org/10.1140/epja/i2018-12525-3

    Article  ADS  Google Scholar 

  75. Q. Xiao, J.H. Cheng, B.L. Wang et al., Half-lives for proton emission and \(\cal{\alpha } \) decay within the deformed Gamow-like model. J. Phys. G Nucl. Part. Phys. 50, 085102 (2023). https://doi.org/10.1088/1361-6471/acdfeb

    Article  ADS  Google Scholar 

  76. N. Takigawa, T. Rumin, N. Ihara, Coulomb interaction between spherical and deformed nuclei. Phys. Rev. C 61, 044607 (2000). https://doi.org/10.1103/PhysRevC.61.044607

    Article  ADS  Google Scholar 

  77. M. Ismail, W.M. Seif, H. El-Gebaly, On the Coulomb interaction between spherical and deformed nuclei. Phys. Lett. B 563, 53 (2003). https://doi.org/10.1016/S0370-2693(03)00600-2

    Article  ADS  Google Scholar 

  78. G.L. Zhang, X.Y. Le, Z.H. Liu, Coulomb potentials between spherical and deformed nuclei. Chin. Phys. Lett. 25, 1247 (2008). https://doi.org/10.1088/0256-307x/25/4/023

    Article  ADS  Google Scholar 

  79. J.M. Dong, W. Zuo, J.Z. Gu et al., \({\alpha }\)-decay half-lives and \({Q}_{{\alpha }}\) values of superheavy nuclei. Phys. Rev. C 81, 064309 (2010). https://doi.org/10.1103/PhysRevC.81.064309

    Article  ADS  Google Scholar 

  80. C. Xu, Z.Z. Ren, \({\alpha }\) decay of nuclei in extreme cases. Phys. Rev. C 69, 024614 (2004). https://doi.org/10.1103/PhysRevC.69.024614

    Article  ADS  Google Scholar 

  81. J.W. Yoon, C. Jeon, J. Shin et al., Achieving the laser intensity of 5.5 \(\times \)\(10^{23} {\rm W}/cm^{2}\) with a wavefront-corrected multi-PW laser. Opt. Express 27, 20412 (2019). https://doi.org/10.1364/OE.27.020412

    Article  ADS  Google Scholar 

  82. W.J. Huang, M. Wang, F.G. Kondev et al., The AME 2020 atomic mass evaluation (I). Evaluation of the input data and adjustment procedures. Chin. Phys. C 45, 030002 (2021). https://doi.org/10.1088/1674-1137/abddb0

    Article  ADS  Google Scholar 

  83. M. Wang, W.J. Huang, F.G. Kondev et al., The AME 2020 atomic mass evaluation (II). Tables, graphs, and References. Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf

    Article  ADS  Google Scholar 

  84. P. Möller, A.J. Sierk, T. Ichikawa et al., Nuclear ground-state masses and deformations: FRDM(2012). Atom. Data Nucl. Data 109, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Xiao-Hua Li and Dr. Hai-Feng Gui for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Qiong Xiao, Jun-Hao Cheng, Yang-Yang Xu and You-Tian Zou. The first draft of the manuscript was written by Qiong Xiao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jun-Hao Cheng or Tong-Pu Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Nature Science Foundation of China (Nos. 12375244, 12135009), the Science and Technology Innovation Program of Hunan Province (No. 2020RC4020), and the Hunan Provincial Innovation Foundation for Postgraduate (No. CX20210007), Natural Science Research Project of Yichang City (No. A23-2-028).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Cheng, JH., Xu, YY. et al. α Decay in extreme laser fields within a deformed Gamow-like model. NUCL SCI TECH 35, 27 (2024). https://doi.org/10.1007/s41365-024-01371-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01371-y

Keywords

Navigation