Skip to main content
Log in

Numerical and theoretical investigations of heat transfer characteristics in helium–xenon cooled microreactor core

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Helium–xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources. To examine the convective heat transfer behavior of helium–xenon gas mixtures in a core environment, numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions. Validated numerical methods are used to determine the effect and mechanisms of power and its distribution, inlet temperature and velocity, and outlet pressure on the distribution and change trend of the axial Nusselt number. Furthermore, a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution correlation for the Nusselt number of the coolant channel, under the assumption of a cosine distribution for the axial power. Based on the simulation results, the correlation coefficients are determined, and a semi-empirical relationship is identified under the corresponding operating conditions. The correlation derived in this study is consistent with the simulations, with an average relative error of 5.3% under the operating conditions. Finally, to improve the accuracy of the predictions near the entrance, a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation. The new correlation reduces the average relative error to 2.9% and maintains satisfactory accuracy throughout the entire axial range of the channel, thereby demonstrating its applicability to turbulent heat transfer calculations for helium–xenon gas mixtures within the core environment. These findings provide valuable insights into the convective heat transfer behavior of a helium–xenon gas mixture in a core environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.10957 and https://cstr.cn/31253.11.sciencedb.10957.

Abbreviations

A :

Cross-sectional area of coolant channel (m2)

a n :

Coefficients in Eq. 13

C :

Constant in Eq. 1

C p :

Specific heat at constant pressure (J/(kg·K))

e :

Constant in Pickett’s correlation

F n :

Coefficients in series expansion of wall temperature

f :

Friction factor

G :

Radial variation of fully developed temperature profile

h :

Convective heat transfer coefficient (W/(m2⋅K))

k :

Thermal conductivity (W/(m·K))

L :

Hydraulic diameter of coolant channel (m)

m :

Mass flow rate (kg/s)

Nu :

Nusselt number

ΔNu :

10% Of average Nu obtained in each run

P :

Pressure of standard condition (MPa)

Pr :

Prandtl number

Pe :

Peclet number

Q :

Power of standard condition (W)

q :

Heat flux (W/m2)

Re :

Reynolds number

r 0 + :

Dimensionless coolant channel radius

T :

Inlet temperature of standard condition (K)

t :

Temperature (K)

U :

Velocity of standard condition (m/s)

u :

Velocity (m/s)

z :

Axial distance from inlet (m)

\(\widetilde{z}\) :

Axial distance between end point of integral and inlet (m)

α :

Constant in Eq. 10

β n :

Eigenvalues

γ :

Distance required downstream of first measuring point to observe a decrease in ΔNu

δ :

Distance required upstream of last measuring point to observe an increase in ΔNu

ε :

Eddy diffusivity (m2/s)

μ :

Viscosity (Pa·s)

π :

Circular constant

ρ :

Density (kg/m3)

φ :

Simplified Fn

ω :

Simplified an

avg:

Average

b:

Bulk

cor:

Calculated by correlation

in:

Inlet

m:

Momentum

out:

Outlet

sim:

Calculated via simulation

t:

Turbulent

w:

Wall

References

  1. B. Zohuri, Nuclear Micro Reactors (Springer, Berlin, 2021)

    Google Scholar 

  2. Q. Yang, Q. Sun, X. Liu et al., Conceptual design and thermal-hydraulic analysis of a megawatt-level lead-bismuth cooling reactor for deep-sea exploration. Prog. Nucl. Energ. 145, 104125 (2022). https://doi.org/10.1016/j.pnucene.2022.104125

    Article  Google Scholar 

  3. L.S. Mason, A comparison of Brayton and stirling space nuclear power systems for power levels from 1 kilowatt to 10 megawatts. AIP Conf. Proc. (2001). https://doi.org/10.1063/1.1358045

    Article  Google Scholar 

  4. S.J. Bae, J. Lee, Y. Ahn et al., Preliminary studies of compact Brayton Cycle Performance for small modular high temperature gas-cooled reactor system. Ann. Nucl. Energ. 75, 11–19 (2015). https://doi.org/10.1016/j.anucene.2014.07.041

    Article  Google Scholar 

  5. R. Zhang, K. Guo, C. Wang et al., Thermal-hydraulic analysis of gas-cooled space nuclear reactor power system with closed Brayton cycle. Int. J. Energ. Res. 45, 11851–11867 (2020). https://doi.org/10.1002/er.5813

    Article  Google Scholar 

  6. C. Xu, F. Kong, D. Yu et al., Influence of non-ideal gas characteristics on working fluid properties and thermal cycle of space nuclear power generation system. Energy 222, 119881 (2021). https://doi.org/10.1016/j.energy.2021.119881

    Article  Google Scholar 

  7. B. Zhou, Y. Ji, J. Sun et al., Modified turbulent prandtl number model for helium–xenon gas mixture with low Prandtl number. Nucl. Eng. Des. 366, 110738 (2020). https://doi.org/10.1016/j.nucengdes.2020.110738

    Article  Google Scholar 

  8. J. Hilsenrath, Y.S. Touloukian, The viscosity, thermal conductivity, and Prandtl number for air, O2, N2, No, H2, CO, CO2, H2O, He, and A. Int. Commun. Heat. Mass. 76, 967–983 (1954). https://doi.org/10.1115/1.4015029

    Article  Google Scholar 

  9. X. Chai, X. Liu, J. Xiong et al., Numerical investigation of turbulent heat transfer properties at low prandtl number. Front. Energy Res. 8, 112 (2020). https://doi.org/10.3389/fenrg.2020.00112

    Article  ADS  Google Scholar 

  10. X. Cheng, N. Tak, Investigation on turbulent heat transfer to lead–bismuth eutectic flows in circular tubes for nuclear applications. Nucl. Eng. Des. 236, 385–393 (2006). https://doi.org/10.1016/j.nucengdes.2005.09.006

    Article  Google Scholar 

  11. M.F. Taylor, K.E. Bauer, D.M. McEligot, Internal forced convection to low-prandtl-number gas mixtures. Int. J. Heat Mass Transf. 31, 13–25 (1988). https://doi.org/10.1016/0017-9310(88)90218-9

    Article  ADS  Google Scholar 

  12. V.E. Nakoryakov, S.L. Elistratov, O.V. Vitovsky et al., Experimental investigation of heat transfer in helium-xenon mixtures in triangle channels. J. Eng. Thermophys. 24, 139–142 (2015). https://doi.org/10.1134/s1810232815020046

    Article  Google Scholar 

  13. O.V. Vitovsky, S.L. Elistratov, M.S. Makarov et al., Heat transfer in a flow of gas mixture with low Prandtl number in triangular channels. J. Eng. Thermophys. 25, 15–23 (2016). https://doi.org/10.1134/s1810232816010021

    Article  Google Scholar 

  14. V.E. Nakoryakov, O.V. Vitovsky, Study of heat transfer of a helium–xenon mixture in heated channels with different cross-sectional shapes. J. Appl. Mech. Tech. Phy. 58, 664–669 (2017). https://doi.org/10.1134/s0021894417040101

    Article  ADS  Google Scholar 

  15. S.L. Elistratov, O.V. Vitovskii, E.Y. Slesareva, Experimental investigation of heat transfer of helium-xenon mixtures in cylindrical channels. J. Eng. Thermophys. 24, 33–35 (2015). https://doi.org/10.1134/s181023281501004x

    Article  Google Scholar 

  16. O.V. Vitovsky, V.E. Nakoryakov, E.Y. Slesareva, Heat transfer of helium–xenon mixture on the initial pipe section. J. Eng. Thermophys. 24, 338–341 (2015). https://doi.org/10.1134/s1810232815040062

    Article  Google Scholar 

  17. M.S. Makarov, O.V. Vitovsky, V.S. Naumkin et al., Investigation of hydraulic resistance and heat transfer in the flow of He-Xe mixture with a small Prandtl number in a quasi-triangular pipe. Int. J. Heat Mass Transf. 199, 123427 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123427

    Article  Google Scholar 

  18. H. Qin, C. Wang, W. Tian et al., Experimental investigation on flow and heat transfer characteristics of He-Xe Gas Mixture. Int. J. Heat Mass Transf. 192, 122942 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122942

    Article  Google Scholar 

  19. O.V. Vitovsky, M.S. Makarov, V.E. Nakoryakov et al., Heat transfer in a small diameter tube at high Reynolds Numbers. Int. J. Heat Mass Transf. 109, 997–1003 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.041

    Article  Google Scholar 

  20. V.G. Lushchik, M.S. Makarova, Heat transfer during the tube flow of an he–xe gas mixture with a substantial pressure gradient due to the strong heating of the tube. J. Eng. Thermophys. 95, 1539–1547 (2022). https://doi.org/10.1007/s10891-022-02622-8

    Article  ADS  Google Scholar 

  21. B. Zhou, Y. Ji, J. Sun et al., Nusselt number correlation for turbulent heat transfer of helium–xenon gas mixtures. Nucl. Sci. Tech. 32, 128 (2021). https://doi.org/10.1007/s41365-021-00972-1

    Article  Google Scholar 

  22. H. Qin, S. Qiu, C. Wang, Numerical investigation on heat transfer characteristics of helium-xenon gas mixture. T. Am. Nucl. Soc. (2019). https://doi.org/10.13182/t31208

    Article  Google Scholar 

  23. D. Huang, Z. Li, L. Yu et al., Influence of helium-xenon mixing ratio on flow heat transfer characteristics of reactor channels. J. Harbin Eng. Univ. 42, 745–750 (2021). https://doi.org/10.11990/jheu.201909048

    Article  Google Scholar 

  24. S. Chen, H. Qin, C. Wang et al., Flow and heat transfer characteristic of He-Xe gas mixturewith helical wire structure. Atom. Energy Sci. Tech. 55, 990–999 (2021). https://doi.org/10.7538/yzk.2020.youxian.0479 (in Chinese)

    Article  Google Scholar 

  25. X. Shi, L. Wang, W. Chen et al., Effect of induced vortex and configuration layout on heat transfer enhancement of helium-xenon mixture. Appl. Therm. Eng. 225, 120168 (2023). https://doi.org/10.1016/j.applthermaleng.2023.120168

    Article  Google Scholar 

  26. T. Meng, K. Cheng, F. Zhao et al., Computational flow and heat transfer design and analysis for 1/12 gas-cooled space nuclear reactor. Ann. Nucl. Energ. 135, 106986 (2020). https://doi.org/10.1016/j.anucene.2019.106986

    Article  Google Scholar 

  27. Z. Duan, J. Zhang, Y. Wu et al., Multi-physics coupling analysis on neutronics, thermal hydraulic and mechanics characteristics of a nuclear thermal propulsion reactor. Nucl. Eng. Des. 399, 112042 (2022). https://doi.org/10.1016/j.nucengdes.2022.112042

    Article  Google Scholar 

  28. M. Yang, Q. Sun, C. Luo et al., Development and verification of a neutronics-thermal hydraulics coupling code with unstructured meshes neutron transport model. Nucl. Tech. 46, 030601 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.030601(in Chinese)

    Article  Google Scholar 

  29. Z. Han, J. Zhang, M. Wang et al., A modified system analysis code for thermo-hydraulic calculation of hydrogen in a nuclear thermal propulsion (NTP) system. Ann. Nucl. Energ. 164, 108632 (2021). https://doi.org/10.1016/j.anucene.2021.108632

    Article  Google Scholar 

  30. Y.-B. Liu, X.-Y. Meng, X.-S. Wang et al., Transient analysis and optimization of passive residual heat removal heat exchanger in advanced nuclear power plant. Nucl. Sci. Tech. 33, 106 (2022). https://doi.org/10.1007/s41365-022-01083-1

    Article  Google Scholar 

  31. R. Lu, Z. Li, J. Zhao et al., Numerical investigation of heat transfer characteristics of high-speed and high-temperature air cooled open-cycle reactor. Appl. Therm. Eng. 179, 115542 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115542

    Article  Google Scholar 

  32. Q. Sun, H. Zhang, Numerical study on heat transfer performance of cooling channels in space core. Appl. Therm. Eng. 210, 118274 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118274

    Article  Google Scholar 

  33. A. Barletta, E. Zanchini, Laminar forced convection with sinusoidal wall heat flux distribution: axially periodic regime. Heat Mass Transfer. 31, 41–48 (1995). https://doi.org/10.1007/bf02537420

    Article  ADS  Google Scholar 

  34. E.M. Sparrow, T.M. Hallman, R. Siegel, Turbulent heat transfer in the thermal entrance region of a pipe with Uniform Heat Flux. Appl. Sci. Res. 7, 37–52 (1957). https://doi.org/10.1007/bf03184700

    Article  MATH  Google Scholar 

  35. R. Siegel, E.M. Sparrow, Turbulent flow in a circular tube with arbitrary internal heat sources and wall heat transfer. J. Heat. Transf. 81, 280–287 (1959). https://doi.org/10.1115/1.4008203

    Article  Google Scholar 

  36. A.P. Hatton, A. Quarmby, The effect of axially varying and unsymmetrical boundary conditions on heat transfer with turbulent flow between parallel plates. Int. J. Heat Mass Transf. 6, 903–914 (1963). https://doi.org/10.1016/0017-9310(63)90081-4

    Article  Google Scholar 

  37. C.-J. Hsu, Heat transfer in a round tube with sinusoidal wall heat flux distribution. AIChE J. 11, 690–695 (1965). https://doi.org/10.1002/aic.690110423

    Article  ADS  Google Scholar 

  38. H. Shu, F. Yasunobu, Turbulent heat transfer in a tube with prescribed heat flux. Int. J. Heat Mass Transf. 11, 943–962 (1968). https://doi.org/10.1016/0017-9310(68)90001-x

    Article  Google Scholar 

  39. C. Guan, X. Chai, T. Zhang et al., Preliminary lightweight core design analysis of a micro-transportable gas-cooled thermal reactor. Int. J. Energ. Res. 46, 17416–17428 (2022). https://doi.org/10.1002/er.8408

    Article  Google Scholar 

  40. M. Wang, Y. Wang, W. Tian et al., Recent progress of CFD applications in PWR Thermal Hydraulics Study and Future Directions. Ann. Nucl. Energ. 150, 107836 (2021). https://doi.org/10.1016/j.anucene.2020.107836

    Article  Google Scholar 

  41. W.-T. Li, X.-K. Meng, H.-Z. Bian et al., Numerical analysis of heat transfer enhancement on steam condensation in the presence of air outside the tube. Nucl. Sci. Tech. 33, 100 (2022). https://doi.org/10.1007/s41365-022-01090-2

    Article  Google Scholar 

  42. W.-H. Ji, J.-J. Cheng, H.-Z. Tao et al., Numerical simulation of coupling heat transfer and thermal stress for spent fuel dry storage cask with different power distribution and tilt angles. Nucl. Sci. Tech. 34, 26 (2023). https://doi.org/10.1007/s41365-023-01171-w

    Article  ADS  Google Scholar 

  43. W.M. Kays, Turbulent prandtl number—where are we? J. Heat Transf. 116, 284–295 (1994). https://doi.org/10.1115/1.2911398

    Article  ADS  Google Scholar 

  44. T. Barth, G. Lecrivain, S.T. Jayaraju et al., Particle deposition and resuspension in gas-cooled reactors—activity overview of the two European research projects THINS and ARCHER. Nucl. Eng. Des. 290, 127–134 (2015). https://doi.org/10.1016/j.nucengdes.2014.11.047

    Article  Google Scholar 

  45. C. Cheng, Z. Duan, W. Xu et al., Experimental study of the fouling deposition on heating surface of narrow rectangular channel. Nucl. Tech. 45, 010601 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.010601 (in Chinese)

    Article  Google Scholar 

  46. F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tubular type. Int. Commun. Heat Mass. 12, 3–22 (1985). https://doi.org/10.1016/0735-1933(85)90003-x

    Article  MATH  Google Scholar 

  47. S.W. Churchill, Comprehensive correlating equations for heat, mass and momentum transfer in fully developed flow in smooth tubes. Ind. Eng. Chem. Fund. 16, 109–116 (1977). https://doi.org/10.1021/i160061a021

    Article  Google Scholar 

  48. W.M. Kays, Convective Heat and Mass Transfer (McGraw-Hill, New York, 1980)

    Google Scholar 

  49. P.E. Pickett, M.F. Taylor, D.M. McEaligot, Heated turbulent flow of helium—argon mixtures in tubes. Int. J. Heat Mass Transf. 22, 705–719 (1979). https://doi.org/10.1016/0017-9310(79)90118-2

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tian-Shi Wang, Xiang Chai and Chao-Ran Guan. The first draft of the manuscript was written by Tian-Shi Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiang Chai.

Ethics declarations

Conflict of interest

Xiao-Jing Liu is an editorial board member for Nuclear Science and Techniques and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

The work was supported by the National Key R&D Program of China (No. 2020YFB1901900), the National Natural Science Foundation of China (No. 12275175), the Special Fund for Strengthening Industry of Shanghai (No. GYQJ-2018-2-02), the Shanghai Rising Star Program (No. 21QA1404200), and the Ling Chuang Research Project of the China National Nuclear Corporation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TS., Chai, X., Guan, CR. et al. Numerical and theoretical investigations of heat transfer characteristics in helium–xenon cooled microreactor core. NUCL SCI TECH 34, 162 (2023). https://doi.org/10.1007/s41365-023-01311-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01311-2

Keywords

Navigation