Skip to main content
Log in

Design optimization of plastic scintillators with wavelength-shifting fibers and silicon photomultiplier readouts in the top veto tracker of the JUNO-TAO experiment

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Plastic scintillators (PSs) embedded with wavelength-shifting fibers are widely used in high-energy particle physics, such as in muon taggers, as well as in medical physics and other applications. In this study, a simulation package was built to evaluate the effects of the diameter and layout of optical fibers on the light yield with different configurations. The optimal optical configuration was designed based on simulations and validated using two PS prototypes under certain experimental conditions. A top veto tracker (TVT) for the JUNO-TAO experiment, comprising four layers of 160 strips of PS, was designed and evaluated. The threshold was evaluated when the muon tagging efficiency of a PS strip was >99%. The efficiency of three layer out of four layer of TVT is >99%, even with a tagging efficiency of a single strip as low as 97%, using a threshold of 10 photoelectrons and assuming a 40% silicon PM photon detection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.08970 and https://www.scidb.cn/anonymous/RnpNSkJ6

References

  1. P.A. Zyla, Particle Data Group, Review of particle physics. Prog. Theor. Exp. Phys. 08, 08 (2020). https://doi.org/10.1093/ptep/ptaa104

    Article  Google Scholar 

  2. M.Y. Guan, M.-C. Chu, J. Cao et al., A parametrization of the cosmic-ray muon flux at sea-level. https://doi.org/10.48550/arXiv.1509.06176

  3. C. Patrignani, Particle Data Group et al., Review of particle physics. Chin. Phys. C 40, 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

    Article  ADS  Google Scholar 

  4. Z.Y. Guo, L. Bathe-Peters, S.M. Chen, (JNE Collaboration) et al., Muon flux measurement at China Jinping Underground Laboratory. Chin. Phys. C 45, 025001 (2021). https://doi.org/10.1088/1674-1137/abccae

    Article  ADS  Google Scholar 

  5. E. Barbuto, C. Bozza, M. Cozzi et al., Atmospheric muon flux measurements at the external site of the Gran Sasso Lab. Nucl. Instrum. Methods Phys. Res. Sect. A 525, 485–495 (2004). https://doi.org/10.1016/j.nima.2004.01.078

    Article  ADS  Google Scholar 

  6. W.H. Trzaska, M. Slupecki, L. Bandac et al., Cosmic-ray muon flux at Canfranc Underground Laboratory. Eur. Phys. J. C 79, 721 (2019). https://doi.org/10.1140/epjc/s10052-019-7239-9

    Article  ADS  Google Scholar 

  7. JUNO Collaboration, JUNO physics and detector. Prog. Part. Nucl. Phys. 123, 0146–6410 (2022). https://doi.org/10.1016/j.ppnp.2021.103927

    Article  Google Scholar 

  8. JUNO Collaboration and T. Adam et al., JUNO conceptual design report. physics.ins-det. https://ui.adsabs.harvard.edu/abs/2015arXiv150807166A

  9. JUNO Collaboration and Angel Abusleme et al., TAO conceptual design report: a precision measurement of the reactor antineutrino spectrum with sub-percent energy resolution. physics.ins-det. https://ui.adsabs.harvard.edu/abs/2020arXiv200508745J

  10. E. Aprile, F. Agostini, M. Alfonsi, XENON1T Collaboration, Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment. JINST 9, P11006 (2014). https://doi.org/10.1088/1748-0221/9/11/P11006

    Article  Google Scholar 

  11. E. Aprile, J. Aalbers, F. Agostini, XENON Collaboration, Projected WIMP sensitivity of the XENONnT dark matter experiment. J. Cosmol. Astropart. Phys. 2020, 031 (2020). https://doi.org/10.1088/1475-7516/2020/11/031

    Article  Google Scholar 

  12. M. Christmann, P. Achenbach, S. Aulenbacher et al., Light dark matter searches with DarkMESA. PoS, EPS-HEP2021, 398, 129 (2022). https://pos.sissa.it/398/129. https://doi.org/10.22323/1.398.0129

  13. T. Alexander, D. Alton, K. Arisaka et al., DarkSide search for dark matter. JINST 8, C11021 (2013). https://doi.org/10.1088/1748-0221/8/11/C11021

    Article  ADS  Google Scholar 

  14. A. Pocar, EXO-200, nEXO collaboration, Searching for neutrino-less double beta decay with EXO-200 and nEXO. Nucl. Part. Phys. Proc. 265–266, 42–44 (2015). https://doi.org/10.1016/j.nuclphysbps.2015.06.011

    Article  Google Scholar 

  15. D. Tosi, EXO collaboration, Search for double beta decay with EXO-200. AIP Conf. Proc. 1560, 187–189 (2013). https://doi.org/10.1063/1.4826749

    Article  ADS  Google Scholar 

  16. R. Gornea, EXO-200 collaboration, Double beta decay in liquid xenon. J. Phys. Conf. Ser. 179, 012004 (2009). https://doi.org/10.1088/1742-6596/179/1/012004

    Article  Google Scholar 

  17. J.B. Birks, The theory and practice of scintillation counting (1964). https://www.slac.stanford.edu/spires/find/books

  18. Y. Zhezher, Telescope Array collaboration, Study of muons in Ultra-High-Energy cosmic-ray air showers with the telescope array experiment. Phys. Atom. Nucl. 82, 685–688 (2019). https://doi.org/10.1134/S1063778819660517

    Article  ADS  Google Scholar 

  19. A. Erhart, NUCLEUS collaboration, Development of an organic plastic scintillator based muon veto operating at sub-kelvin temperatures for the NUCLEUS experiment, in 19th International Workshop on Low Temperature Detectors. https://doi.org/10.1007/s10909-022-02842-5

  20. J.W. Seo, E.J. Jeon, W.T. Kim et al., A feasibility study of extruded plastic scintillator embedding WLS fiber for AMoRE-II muon veto. Nucl. Instrum. Methods A 1039, 167123 (2022). https://doi.org/10.1016/j.nima.2022.167123

    Article  Google Scholar 

  21. K.J. Thomas, E.B. Norman, A.R. Smith et al., Installation of a muon veto for low background gamma spectroscopy at the LBNL low-background facility. Nucl. Instrum. Methods Phys. Res. Sect. A 724, 47–53 (2013). https://doi.org/10.1016/j.nima.2013.05.034

    Article  ADS  Google Scholar 

  22. A. Pla-Dalmau, A.D. Bross, K.L. Mellott, Low-cost extruded plastic scintillator. Nucl. Instrum. Methods A 466, 482–491 (2001). https://doi.org/10.1016/S0168-9002(01)00177-2

    Article  ADS  Google Scholar 

  23. A.A. Moiseev, P.L. Deering, R.C. Hartman et al., High efficiency plastic scintillator detector with wavelength-shifting fiber readout for the GLAST large area telescope. Nucl. Instrum. Methods A 583, 372–381 (2007). https://doi.org/10.1016/j.nima.2007.09.040

    Article  ADS  Google Scholar 

  24. V.M. Thakur, A. Jain, P. Ashokkumar et al., Design and development of a plastic scintillator based whole body beta/gamma contamination monitoring system. Nucl. Sci. Tech. 32, 47 (2021). https://doi.org/10.1007/s41365-021-00883-1

    Article  Google Scholar 

  25. U. Holm, K. Wick, Radiation stability of plastic scintillators and wave length shifters. IEEE Trans. Nucl. Sci. 36, 579–583 (1989). https://doi.org/10.1109/23.34504

    Article  ADS  Google Scholar 

  26. C. Bloise, S. Ceravolo, F. Cervelli et al., Design, assembly and operation of a Cosmic Ray Tagger based on scintillators and SiPMs. Nucl. Instrum. Methods A 1045, 167538 (2023). https://doi.org/10.1016/j.nima.2022.167538

    Article  Google Scholar 

  27. P. Buzhan, A. Karakash, Hand-foot monitors for nuclear plants based on scintillator–WLS–SiPM technology. J. Phys Conf. Ser. 1689, 012011 (2020). https://doi.org/10.1088/1742-6596/1689/1/012011

    Article  Google Scholar 

  28. W. Bugg, Yu. Efremenko, S. Vasilyev, Large plastic scintillator panels with WLS fiber readout; optimization of components. Nucl. Instrum. Methods A 758, 91–96 (2014). https://doi.org/10.1016/j.nima.2014.05.055

    Article  ADS  Google Scholar 

  29. J.N. Dong, Y.L. Zhang, Z.Y. Zhang et al., Position-sensitive plastic scintillator detector with WLS-fiber readout. Nucl. Sci. Tech. 29, 117 (2018). https://doi.org/10.1007/s41365-018-0449-2

    Article  Google Scholar 

  30. Y. Yang, C.P. Yang, J. Xin et al., Performance of a plastic scintillation fiber dosimeter based on different photoelectric devices. Nucl. Sci. Tech. 32, 120 (2021). https://doi.org/10.1007/s41365-021-00965-0

    Article  Google Scholar 

  31. T. Adam et al., The OPERA experiment target tracker. Nucl. Instrum. Methods A 577, 523–539 (2007). https://doi.org/10.1016/j.nima.2007.04.147

    Article  ADS  Google Scholar 

  32. P. Adamson, K. Alexandrov, G. Alexeev et al., The MINOS scintillator calorimeter system. IEEE Trans. Nucl. Sci. 49, 861–863 (2002). https://doi.org/10.1109/TNS.2002.1039579

    Article  ADS  Google Scholar 

  33. Y.P. Wang, C. Hou, X.D. Sheng et al., Testing and analysis of the plastic scintillator units for LHAASO-ED. Rad. Det. Tech. Meth. 54, 513–519 (2021). https://doi.org/10.1007/s41605-021-00274-5

    Article  Google Scholar 

  34. F. Aharonian, Q. An, Axikegu et al., Performance test of the electromagnetic particle detectors for the LHAASO experiment. Nucl. Instrum. Methods A. 1001, 165193 (2021). https://doi.org/10.1016/j.nima.2021.165193

    Article  Google Scholar 

  35. J. Evans, MINOS collaboration, The MINOS experiment: results and prospects. Adv. High Energy Phys. 2013, 182537 (2013). https://doi.org/10.1155/2013/182537

    Article  Google Scholar 

  36. S. Orsi, PAMELA collaboration, PAMELA: a payload for antimatter matter exploration and light nuclei astrophysics. Nucl. Instrum. Methods A 580, 880–883 (2007). https://doi.org/10.1016/j.nima.2007.06.051

    Article  ADS  Google Scholar 

  37. V. Andreev, V. Balagura, B. Bobchenko et al., A high granularity scintillator hadronic-calorimeter with SiPM readout for a linear collider detector. Nucl. Instrum. Methods A 540, 368–380 (2005). https://doi.org/10.1016/j.nima.2004.12.002

    Article  ADS  Google Scholar 

  38. D.J. Thompson, C.A. Wilson-Hodge, Fermi gamma-ray space telescope. arXiv:2210.12875

  39. S. Procureur, Muon imaging: principles, technologies and applications. Nucl. Instrum. Methods Phys. Res. Sect. 878, 169–179 (2018). https://doi.org/10.1016/j.nima.2017.08.004

    Article  ADS  Google Scholar 

  40. K. Morishima, M. Kuno, A. Nishio et al., Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 552, 386–390 (2017). https://doi.org/10.1038/nature24647

    Article  ADS  Google Scholar 

  41. A. Zenoni, Historical building stability monitoring by means of a cosmic ray tracking system, in 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications. IEEE Nuclear Science Symposium Conference Record, pp. 1–8 (2015). https://doi.org/10.1109/ANIMMA.2015.7465542

  42. J. Marteau, D. Gibert, N. Lesparre et al., Muons tomography applied to geosciences and volcanology. Nucl. Instrum. Methods A 695, 23–28 (2012). https://doi.org/10.1016/j.nima.2011.11.061

    Article  ADS  Google Scholar 

  43. S. Oguri, Y. Kuroda, Y. Kato et al., Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method. Nucl. Instrum. Methods A 757, 33–39 (2014). https://doi.org/10.1016/j.nima.2014.04.065

    Article  ADS  Google Scholar 

  44. A.Sh. Georgadze, V.M. Pavlovych, O.A. Ponkratenko et al., A remote reactor monitoring with plastic scintillation detector. arXiv:1610.05884

  45. P.R. Scovell, A. Vacheret, A. Baird et al., Low background anti-neutrino monitoring with an innovative composite solid scintillator detector, in 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference and Workshop on Room-Temperature Semiconductor Detectors, pp. 1–7 (2013). https://doi.org/10.1109/NSSMIC.2013.682954

  46. F. Capozzi, E. Lisi, A. Marrone, Mapping reactor neutrino spectra from TAO to JUNO. Phys. Rev. D 102, 056001 (2020). https://doi.org/10.1103/PhysRevD.102.056001

    Article  ADS  Google Scholar 

  47. S. Agostinelli, J. Allison, K. Amako et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  48. S. Riggi, P. La Rocca, E. Leonora et al., Geant4 simulation of plastic scintillator strips with embedded optical fibers for a prototype of tomographic system. Nucl. Instrum. Methods A 624, 583–590 (2010). https://doi.org/10.1016/j.nima.2010.10.012

    Article  ADS  Google Scholar 

  49. W.Z. Xu, Y.F. Liu, Z.Q. Tan et al., Geant4 simulation of plastic scintillators for a prototype uSR spectrometer. Nucl. Sci. Tech. 24, 4 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.04.011

    Article  Google Scholar 

  50. P. Lecoq, Scintillation detectors for charged particles and photons, in Particle Physics Reference Library (Springer, Cham, 2020), pp. 45–89 . https://doi.org/10.1007/978-3-030-35318-6-3

  51. M. Li, Z.M. Wang, C.M. Liu et al., Performance of compact plastic scintillator strips with wavelength shifting fibers using a photomultiplier tube or silicon photomultiplier readout. Nucl. Sci. Tech. 34, 2 (2023). https://doi.org/10.1007/s41365-023-01175-6

    Article  Google Scholar 

  52. H. Yang, G. Luo, T. Yu et al., MuGrid: a scintillator detector towards cosmic muon absorption imaging. Nucl. Instrum. Methods A 1042, 167402 (2022). https://doi.org/10.1016/j.nima.2022.167402

    Article  Google Scholar 

  53. Hoton Technology Co. Beijing Hoton Nuclear Technology Co., Ltd. http://www.hoton.com.cn/English/index.html

  54. C. Tur, V. Solovyev, J. Flamanc et al., Temperature characterization of scintillation detectors using solid-state photomultipliers for radiation monitoring applications. Nucl. Instrum. Methods A 620, 351–358 (2010). https://doi.org/10.1016/j.nima.2010.03.141

    Article  ADS  Google Scholar 

  55. E. Dietz Laursonn, Detailed studies of light transport in optical components of particle detectors. Aachen, Tech. Hochsch. https://inspirehep.net/literature/1505685

  56. X.L. Qian, H.Y. Sun, C. Liu et al., Simulation study on performance optimization of a prototype scintillation detector for the GRANDProto35 experiment. Nucl. Sci. Tech. 32, 51 (2021). https://doi.org/10.1007/s41365-021-00882-2

    Article  Google Scholar 

  57. T. Gaisser, Cosmic-ray showers reveal muon mystery. APS Phys. 9, 125 (2016). https://doi.org/10.1103/Physics.9.125

    Article  Google Scholar 

  58. P. Shukla, S. Sankrith, Energy and angular distributions of atmospheric muons at the Earth. Int. J. Mod. Phys. A 33, 1850175 (2018). https://doi.org/10.1142/S0217751X18501750

    Article  ADS  Google Scholar 

  59. Semiconductor Components Industries, LLC. Cherry Semiconductor (1999–2023)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Guang Luo, Pei-Zhi Lu, and Min Li. The first draft of the manuscript was written by Guang Luo, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Y. K. Hor, Zhi-Min Wang or Wei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the School of Physics at Sun Yat-sen University, China.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Hor, Y.K., Lu, PZ. et al. Design optimization of plastic scintillators with wavelength-shifting fibers and silicon photomultiplier readouts in the top veto tracker of the JUNO-TAO experiment. NUCL SCI TECH 34, 99 (2023). https://doi.org/10.1007/s41365-023-01263-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01263-7

Keywords

Navigation