Skip to main content
Log in

Efficient and selective extraction of uranium from seawater based on a novel pulsed liquid chromatography radionuclide separation method

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The novel pulsed liquid chromatography radionuclide separation method presented here provides a new and promising strategy for the extraction of uranium from seawater. In this study, a new chromatographic separation method was proposed, and a pulsed nuclide automated separation device was developed, alongside a new chromatographic column. The length of this chromatographic column was 10 m, with an internal warp of 3 mm and a packing size of 1 mm, while the total separation units of the column reached 12,250. The most favorable conditions for the separation of nuclides were then obtained through optimizing the separation conditions of the device: Sample pH in the column = 2, sample injection flow rate = 5.698 mL/min, chromatographic column heating temperature = 60 °C. Separation experiments were also carried out for uranium, europium, and sodium ions in mixed solutions; uranium and sodium ions in water samples from the Ganjiang River; and uranium, sodium, and magnesium ions from seawater samples. The separation factors between the different nuclei were then calculated based on the experimental data, and a formula for the separation level was derived. The experimental results showed that the separation factor in the mixed solution of uranium and europium (1:1) was 1.088, while achieving the initial separation of uranium and europium theoretically required a 47-stage separation. Considering the separation factor of 1.50 for the uranium and sodium ions in water samples from the Ganjiang River, achieving the initial separation of uranium and sodium ions would have theoretically required at least a 21-stage separation. Furthermore, for the seawater sample separation experiments, the separation factor of uranium and sodium ions was 1.2885; therefore, more than 28 stages of sample separation would be required to achieve uranium extraction from seawater. The novel pulsed liquid chromatography method proposed in this study was innovative in terms of uranium separation and enrichment, while expanding the possibilities of extracting uranium from seawater through chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13

Similar content being viewed by others

References

  1. R.R. Alnuaimi, B. Khuwaileh, M. Zubair et al., Nuclear design of an integrated small modular reactor based on the APR-1400 for RO desalination purposes. Nucl. Sci. Tech. 33, 95 (2022). https://doi.org/10.1007/s41365-022-01082-2

    Article  Google Scholar 

  2. H.B. Yang, X.Q. Li, Y.H. Yu et al., Design and evaluation of prototype readout electronics for nuclide detector in very large area space telescope. Nucl. Sci. Tech. 33, 65 (2022). https://doi.org/10.1007/s41365-022-01047-5

    Article  Google Scholar 

  3. C.W. Abney, R.T. Mayes, T. Saito et al., Materials for the recovery of uranium from seawater. Chem. Rev. 117, 13935–14013 (2017). https://doi.org/10.1021/acs.chemrev.7b00355

    Article  Google Scholar 

  4. Y.F. Yue, R.T. Mayes, J.S. Kim et al., Seawater uranium sorbents: preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization. Angew. Chem. Int. Ed. 52, 13458–13462 (2013). https://doi.org/10.1002/anie.201307825

    Article  Google Scholar 

  5. Y.D. Pu, T.T. Qiang, L.F. Ren, Waste feather fibre based high extraction capacity bio-adsorbent for sustainable uranium extraction from seawater. Int. J. Biol. Macromol. 206, 699–707 (2022). https://doi.org/10.1016/j.ijbiomac.2022.03.019

    Article  Google Scholar 

  6. G. Cheng, A.R. Zhang, Z.W. Zhao et al., Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Sci. Bull. 66(19), 1994–2001 (2021). https://doi.org/10.1016/J.SCIB.2021.05.012

    Article  Google Scholar 

  7. H. Guo, P. Mei, J.T. Xiao et al., Carbon materials for extraction of uranium from seawater. Chemosphere 278, 130411 (2021). https://doi.org/10.1016/J.CHEMOSPHERE.2021.130411

    Article  ADS  Google Scholar 

  8. Y.D. Pu, T.T. Qiang, L.F. Ren, Anti-biofouling bio-adsorbent with ultrahigh uranium extraction capacity: one uranium resource recycling solution. Desalination 531, 115721 (2022). https://doi.org/10.1016/J.DESAL.2022.115721

    Article  Google Scholar 

  9. P.H. Ju, K.T. Alali, G.H. Sun et al., Swollen-layer constructed with polyamine on the surface of nano-polyacrylonitrile cloth used for extract uranium from seawater. Chemosphere 271, 129548 (2021). https://doi.org/10.1016/J.CHEMOSPHERE.2021.129548

    Article  ADS  Google Scholar 

  10. S. Das, A.K. Pandey, A. Athawale et al., Exchanges of uranium(VI) species in amidoxime-functionalized sorbents. J. Phys. Chem. 113(18), 6328–6335 (2009). https://doi.org/10.1021/jp8097928

    Article  Google Scholar 

  11. H. Li, S. Wang, Reaction: semiconducting MOFs offer new strategy for uranium extraction from seawater. Chem. Rev. 7(2), 279–280 (2021). https://doi.org/10.1016/J.CHEMPR.2021.01.013

    Article  Google Scholar 

  12. Y.D. Wu, W.R. Cui, C.R. Zhang et al., Regenerable, anti-biofouling covalent organic frameworks for monitoring and extraction of uranium from seawater. Environ. Chem. 19, 1847–1856 (2021). https://doi.org/10.1007/S10311-020-01179-3

    Article  Google Scholar 

  13. B. Yan, C. Ma, J. Gao et al., An lon-crossiinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater. Adv. Mater. 32(10), 1906615 (2020). https://doi.org/10.1002/adma.201906615

    Article  Google Scholar 

  14. Z.Y. Bai, Q. Liu, H.S. Zhang et al., Mussel-inspired anti-biofouling and robust hybrid nanocomposite hydrogel for uranium extraction from seawater. J. Hazard. Mater. 381, 120984 (2019). https://doi.org/10.1016/j.jhazmat.2019.120984

    Article  Google Scholar 

  15. Z.Y. Wang, Q.Y. Meng, R.C. Ma et al., Constructing an ion pathway for uranium extraction from seawater. Chem 6(7), 1683–1691 (2020). https://doi.org/10.1016/j.chempr.2020.04.012

    Article  Google Scholar 

  16. A.F. Ismail, M.S. Yim, Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater. Nucl. Eng. Technol. 47(5), 579–587 (2015). https://doi.org/10.1016/j.net.2015.02.002

    Article  Google Scholar 

  17. C. Liu, P.C. Hsu, J. Xie et al., A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2(4), 294–303 (2017). https://doi.org/10.1038/nenergy.2017.7

    Article  Google Scholar 

  18. C.X. Dong, T.T. Qiao, Y.B. Huang et al., Efficient photocatalytic extraction of uranium over ethylenediamine capped cadmium sulfide telluride nanobelts. ACS Appl. Mater. Interfaces 13(10), 11968–11976 (2021). https://doi.org/10.1021/acsami.0c22800

    Article  Google Scholar 

  19. M.W. Chen, T. Liu, X.B. Zhang et al., Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 31(22), 2100106 (2021). https://doi.org/10.1002/adfm.202100106

    Article  Google Scholar 

  20. K. Lin, W.Y. Sun, L.J. Feng et al., Kelp inspired bio-hydrogel with high antibiofouling activity and super-toughness for ultrafast uranium extraction from seawater. Chem. Eng. J. 430, 133121 (2021). https://doi.org/10.1016/J.CEJ.2021.133121

    Article  Google Scholar 

  21. S. Yang, Y. Cao, T. Wang et al., Positively charged conjugated microporous polymers with antibiofouling activity for ultrafast and highly selective uranium extraction from seawater. Environ. Res. 183, 109214 (2020). https://doi.org/10.1016/j.envres.2020.109214

    Article  Google Scholar 

  22. S. Das, A.K. Pandey, A. Athawale et al., Chemical aspects of uranium recovery from seawater by amidoximated electron-beam-grafted polypropylene membranes. Desalination 232(1–3), 243–253 (2008). https://doi.org/10.1016/j.desal.2007.09.019

    Article  Google Scholar 

  23. S. Das, Z.Y. Wang, B. Suree et al., Strategies toward the synthesis of advanced functional sorbent performance for uranium uptake from seawater. Ind. Eng. Chem. Res. 60, 15037–15044 (2021). https://doi.org/10.1021/ACS.IECR.1C02920

    Article  Google Scholar 

  24. S. Abdel, I. Fatma et al., Synthesis of gemini cationic surfactant for proficient extraction of uranium (VI) from sulfuric acid solution. J. Radioanal. Nucl. Chem. 330, 175–189 (2021). https://doi.org/10.1007/s10967-021-07966-8

    Article  Google Scholar 

  25. S. Shi, B.C. Li, Y.X. Qian et al., A simple and universal strategy to construct robust and anti-biofouling amidoxime aerogels for enhanced uranium extraction from seawater. Chem. Eng. J. 397, 125337 (2020). https://doi.org/10.1016/j.cej.2020.125337

    Article  Google Scholar 

  26. Y. Wang, Y.P. Zhang, Q. Li et al., Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater. Carbohydr. Polym. 245(2), 116627 (2020). https://doi.org/10.1016/j.carbpol.2020.116627

    Article  Google Scholar 

  27. Y. Wang, Z.W. Lin, H.S. Zhang et al., Anti-bacterial and super-hydrophilic bamboo charcoal with amidoxime modified for efficient and selective uranium extraction from seawater. J. Colloid. Interface Sci. 598, 455–463 (2021). https://doi.org/10.1016/J.JCIS.2021.03.154

    Article  ADS  Google Scholar 

  28. L.S. Yang, H.C. Xiao, Y.C. Qian et al., Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat. Sustain. 5(1), 71–80 (2021). https://doi.org/10.1038/S41893-021-00792-6.5(1)

    Article  Google Scholar 

  29. P.P. Mei, R. Wu, S. Shi et al., Conjugating hyaluronic acid with porous biomass to construct anti-adhesive sponges for rapid uranium extraction from seawater. Chem. Eng. J. 420, 130382 (2021). https://doi.org/10.1016/J.CEJ.2021.130382

    Article  Google Scholar 

  30. M. Wehbie, G. Arrachart, T. Sukhbaatar et al., Extraction of uranium from sulfuric acid media using amino-diamide extractants. Hydrometallurgy 200(23), 105550 (2020). https://doi.org/10.1016/J.HYDROMET.2020.105550

    Article  Google Scholar 

  31. Z. Zhang, F. Yong, L. Zhang et al., High performance task-specific ionic liquid in uranium extraction endowed with negatively charged effect. J. Mol. Liq. 336, 116601 (2021). https://doi.org/10.1016/J.MOLLIQ.2021.116601

    Article  Google Scholar 

  32. R.H. Yan, W.R. Cui, C.R. Zhang et al., Bio-inspired hydroxylation imidazole linked covalent organic polymers for uranium extraction from aqueous phases-sciencedirect. Chem. Eng. J. 420, 129658 (2021). https://doi.org/10.1016/J.CEJ.2021.129658

    Article  Google Scholar 

  33. Z. Ahmad, Y. Lia, J.J. Yang et al., A membrane-supported bifunctional poly(amidoxime-ethyleneimine) network for enhanced uranium extraction from seawater and wastewater. J. Hazard. Mater. 425, 127995 (2021). https://doi.org/10.1016/J.JHAZMAT.2021.127995

    Article  Google Scholar 

  34. J.W. Wang, Y. Sun, X.M. Zhao et al., A poly(amidoxime)-modified mof macroporous membrane for high-efficient uranium extraction from seawater. E-Polym. 22(1), 399–410 (2022). https://doi.org/10.1515/EPOLY-2022-0038

    Article  Google Scholar 

  35. P. Li, J.J. Wang, W. Yun et al., Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem. Eng. J. 365, 231–241 (2019). https://doi.org/10.1016/j.cej.2019.02.013

    Article  Google Scholar 

  36. Y. Wang, J.J. Wang, J. Wang et al., Efficient recovery of uranium from saline lake brine through photocatalytic reduction. J. Mol. Liq. 308, 113007 (2020). https://doi.org/10.1016/j.molliq.2020.113007

    Article  Google Scholar 

  37. F.T. Yu, Z.Q. Zhu, S.P. Wang et al., Tunable perylene-based donor-acceptor conjugated microporous polymer to significantly enhance photocatalytic uranium extraction from seawater. Chem. Eng. J. 412, 127558 (2020). https://doi.org/10.1016/j.cej.2020.127558

    Article  Google Scholar 

  38. X. Zhong, Y.X. Liu, T. Hou et al., Effect of Bi2 WO6 nanoflowers on the U(VI) removal from water: roles of adsorption and photoreduction. J. Environ. Chem. Eng. 10, 107170 (2022). https://doi.org/10.1016/J.JECE.2022.107170

    Article  Google Scholar 

  39. K.D. Zhou, Y.C. Ding, L.F. Zhang et al., Synthesis of mesoporous ZnO/TiO2-SiO2 composite material and its application in photocatalytic adsorption desulfurization without the addition of an extra oxidant. Dalton. Trans. 49(5), 1600–1612 (2020). https://doi.org/10.1039/C9DT04454J

    Article  Google Scholar 

  40. P. Li, Y. Wang, J.J. Wang et al., Carboxyl groups on g-c3n4 for boosting the photocatalytic u(vi) reduction in the presence of carbonates. Chem. Eng. J. 414(28), 128810 (2021). https://doi.org/10.1016/J.CEJ.2021.128810

    Article  Google Scholar 

  41. K. Chen, C.L. Chen, X.M. Ren et al., Interaction mechanism between different facet tio2 and U(VI): experimental and density-functional theory investigation. Chem. Eng. J. 359, 944–954 (2018). https://doi.org/10.1016/j.cej.2018.11.092

    Article  Google Scholar 

  42. J. Lei, H.H. Liu, F.C. Wen et al., Tellurium nanowires wrapped by surface oxidized tin disulfide nanosheets achieves efficient photocatalytic reduction of U(VI). Chem. Eng. J. 426, 130756 (2021). https://doi.org/10.1016/J.CEJ.2021.130756

    Article  Google Scholar 

  43. P.L. Liang, L.Y. Yuan, H. Deng et al., Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl. Catal. B Environ. 267, 118688 (2020). https://doi.org/10.1016/j.apcatb.2020.118688

    Article  Google Scholar 

  44. J. Chen, Z.J. Gong, W.Y. Tang et al., Carbon dots in sample preparation and chromatographic separation: recent advances and future prospects. Trends. Analyt. Chem. 134, 116135 (2020). https://doi.org/10.1016/J.TRAC.2020.116135

    Article  Google Scholar 

  45. X.Z. Li, Q.X. Zhang, H.Y. Tan et al., Fast nuclide identification based on a sequential bayesian method. Nucl. Sci. Tech. 32, 143 (2021). https://doi.org/10.1007/s41365-021-00982-z

    Article  Google Scholar 

  46. L. Chen, R. Yan, X.Z. Kang et al., Study on the production characteristics of 131I and 90Sr isotopes in a molten salt reactor. Nucl. Sci. Tech. 32, 33 (2021). https://doi.org/10.1007/s41365-021-00867-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jian-Hua Ye and Tao Yu. The first draft of the manuscript was written by Jian-Hua Ye and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tao Yu.

Additional information

This work was supported by the Natural Science Foundation of Jiangxi Province, China (No. 20202BABL203004), the Opening Project of the State Key Laboratory of Nuclear Resources and Environment (East China University of Technology)(No. 2022NRE23), and the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (No. PMND202101).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, JH., Yu, T. Efficient and selective extraction of uranium from seawater based on a novel pulsed liquid chromatography radionuclide separation method. NUCL SCI TECH 34, 19 (2023). https://doi.org/10.1007/s41365-023-01180-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01180-9

Keywords

Navigation