Skip to main content
Log in

High-brightness photo-injector with standing-wave buncher-based ballistic bunching scheme for inverse Compton scattering light source

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

We report our recent progress in the design and simulation of a high-brightness S-band photo-injector with a ballistic bunching scheme aimed at driving an inverse Compton scattering (ICS) X-ray source. By adding a short standing-wave buncher between the RF gun and first booster in a conventional S-band photo-injector, electron bunches with a 500 pC charge can be compressed to the sub-picosecond level with very limited input RF power and an unchanged basic layout of the photo-injector. Beam dynamics analysis indicates that fine tuning of the focusing strength of the gun and linac solenoid can well balance additional focusing provided by the standing wave buncher and generate a well-compensated transverse emittance. Thorough bunching dynamics simulations with different operating conditions of the buncher show that a buncher with more cells and a moderate gradient is suitable for simultaneously obtaining a short bunch duration and low emittance. In a typical case of a 9-cell buncher with a 38 MV/m gradient, an ultrashort bunch duration of 0.5 ps (corresponding to a compression ratio of \(> 5\)) and a low emittance of \(< {1}\,{\hbox {mm}\cdot \hbox {mrad}}\) can be readily obtained for a 500 pC electron pulse. This feasible ballistic bunching scheme will facilitate the implementation of an ultrashort pulse mode inverse Compton scattering X-ray source on most existing S-band photo-injectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Schoenlein, W. Leemans, A. Chin et al., Femtosecond X-ray pulses at 0.4 generated by \(90^{\circ }\) Thomson scattering: A tool for probing the structural dynamics of materials. Science 274, 236 (1996). https://doi.org/10.1126/science.274.5285.236

  2. C. Tang, W. Huang, R. Li et al., Tsinghua Thomson scattering X-ray source. Nucl. Instrum. Methods A 608, S70 (2009). https://doi.org/10.1016/j.nima.2009.05.088

    Article  Google Scholar 

  3. K. Dupraz, M. Alkadi, M. Alves et al., The ThomX ICS source. Phys. Open 5, 100051 (2020). https://doi.org/10.1016/j.physo.2020.100051

    Article  Google Scholar 

  4. Z. Chi, Y. Du, L. Yan et al., Thomson scattering X-ray source: a novel tool for monochromatic computed tomography. Dev. X-Ray Tomogr. XI 10391, 163 (2017). https://doi.org/10.1117/12.2273136

    Article  Google Scholar 

  5. K. Ta Phouc, S. Corde, C. Thaury et al., All-optical Compton gamma-ray source. Nat. Photonics 6, 308 (2012). https://doi.org/10.1038/nphoton.2012.82

  6. D.J. Gibson, F. Albert, S.G. Anderson et al., Design and operation of a tunable MeV-level Compton-scattering-based \(\gamma\)-ray source. Phys. Rev. Accel. Beams 13, 070703 (2010). https://doi.org/10.1103/PhysRevSTAB.13.070703

    Article  ADS  Google Scholar 

  7. S. Boucher, P. Frigola, A. Murokh et al., Inverse compton scattering gamma ray source. Nucl. Instrum. Methods A 608, S54 (2009). https://doi.org/10.1016/j.nima.2009.05.035

    Article  Google Scholar 

  8. F.V. Hartemann, W.J. Brown, D.J. Gibson et al., High-energy scaling of Compton scattering light sources. Phys. Rev. Accel. Beams 8, 100702 (2005). https://doi.org/10.1103/PhysRevSTAB.8.100702

    Article  ADS  Google Scholar 

  9. X. Wang, M. Babzien, K. Batchelor et al., Experimental characterization of the high-brightness electron photoinjector. Nucl. Instrum. Methods A 375, 82 (1996). https://doi.org/10.1016/0168-9002(96)00039-3

    Article  ADS  Google Scholar 

  10. K.T. McDonald, Design of the laser-driven RF electron gun for the BNL accelerator test facility. IEEE Trans. Electron. Dev. 53, 2052 (1988). https://doi.org/10.1109/16.7427

    Article  ADS  Google Scholar 

  11. L. Zheng, Y. Du, Z. Zhang et al., Development of S-band photocathode RF guns at Tsinghua University. Nucl. Instrum. Methods A 834, 98 (2016). https://doi.org/10.1016/j.nima.2016.07.015

    Article  ADS  Google Scholar 

  12. B.E. Carlsten, New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl. Instrum. Methods A 285, 313 (1989). https://doi.org/10.1016/0168-9002(89)90472-5

    Article  ADS  Google Scholar 

  13. T. Rao, D. H. Dowell, An engineering guide to photoinjectors. arXiv:1403.7539 (2014)

  14. R. Akre, D. Dowell, P. Emma et al., Commissioning the Linac Coherent Light Source injector. Phys. Rev. Accel. Beams 11, 030703 (2008). https://doi.org/10.1103/PhysRevSTAB.11.030703

    Article  ADS  Google Scholar 

  15. H. Chen, L. Yan, Q. Tian et al., Commissioning the photoinjector of a gamma-ray light source. Phys. Rev. Accel. Beams 22, 053403 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.053403

    Article  ADS  Google Scholar 

  16. S.G. Anderson, P. Musumeci, J.B. Rosenzweig et al., Velocity bunching of high-brightness electron beams. Phys. Rev. Accel. Beams 8, 014401 (2005). https://doi.org/10.1103/PhysRevSTAB.8.014401

    Article  ADS  Google Scholar 

  17. L. Serafini, M. Ferrario, Velocity bunching in photo-injectors. AIP Conf. Proc. 581, 87 (2001). https://doi.org/10.1063/1.1401564

    Article  ADS  Google Scholar 

  18. P. Piot, L. Carr, W.S. Graves et al., Subpicosecond compression by velocity bunching in a photoinjector. Phys. Rev. Accel. Beams 6, 033503 (2003). https://doi.org/10.1103/PhysRevSTAB.6.033503

    Article  ADS  Google Scholar 

  19. M. Ferrario, D. Alesini, A. Bacci et al., Experimental demonstration of emittance compensation with velocity bunching. Phys. Rev. Lett. 104, 054801 (2010). https://doi.org/10.1103/PhysRevLett.104.054801

  20. M. Zhang, D. Gu, Q. Gu et al., Velocity bunching for the linac of Shanghai Deep UV FEL facility. Nucl. Sci. Tech. 23, 134 (2012). https://doi.org/10.13538/j.1001-8042/nst.23.134-138

    Article  Google Scholar 

  21. R. Huang, Z. He, B. Li et al., Generation of high brightness electron beam by brake-applied velocity bunching with a relatively low energy chirp. Nucl. Instrum. Methods A 866, 65 (2017). https://doi.org/10.1016/j.nima.2017.05.022

    Article  ADS  Google Scholar 

  22. H.H. Braun, R. Corsini, L. Groening et al., Emittance growth and energy loss due to coherent synchrotron radiation in a bunch compressor. Phys. Rev. Accel. Beams 3, 124402 (2000). https://doi.org/10.1103/PhysRevSTAB.3.124402

    Article  ADS  Google Scholar 

  23. P. Musumeci, R.J. England, M.C. Thompson et al., Velocity bunching experiment at the Neptune Laboratory. AIP Conf. Proc. 647, 858 (2002). https://doi.org/10.1063/1.1524941

    Article  ADS  Google Scholar 

  24. Y. Ding, Y. Du, Z. Zhang et al., Simulation study of a photo-injector for brightness improvement in Thomson scattering X-ray source via ballistic bunching. Chin. Phys. C 38, 027003 (2014). https://doi.org/10.1088/1674-1137/38/2/027003

    Article  ADS  Google Scholar 

  25. K. Flottmann, A Space Charge Tracking Algorithm (2017). https://www.desy.de/mpyflo/

  26. H. Grote and F. C. Iselin, The MAD program (methodical accelerator design): version 8.10; user’s reference manual. CM-P00049316 (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhou.

Additional information

This work was supported by National Natural Science Foundation of China (NSFC) (Nos. 12005211, 11905210, 11975218 and 11805192).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JX., Zhou, K., Li, P. et al. High-brightness photo-injector with standing-wave buncher-based ballistic bunching scheme for inverse Compton scattering light source. NUCL SCI TECH 33, 44 (2022). https://doi.org/10.1007/s41365-022-01025-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01025-x

Keywords

Navigation