Skip to main content
Log in

Non-extensive statistical distributions of charmed meson production in Pb–Pb and pp(\(\overline{\text {p}}\)) collisions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The mid-rapidity transverse momentum spectra of charmed mesons in Pb–Pb and pp(\(\overline{\text {p}}\)) collisions are analyzed using the Tsallis–Pareto distribution derived from non-extensive statistics. We provide uniform descriptions of both small and large systems over a wide range of collision energies and hadron transverse momenta. By establishing the relationship between the event multiplicity and Tsallis parameters, we observe that there is a significant linear relationship between the thermal temperature and Tsallis q parameter in Pb–Pb collisions at \(\sqrt{s_\text {NN}}\) = 2.76 TeV and 5.02 TeV. Further, the slope of the T–(\(q-1\)) parameter plot is positively correlated with the hadron mass. In addition, charmed mesons have a higher thermal temperature than light hadrons at the same \(q-1\), indicating that the charm flavor requires a higher temperature to reach the same degree of non-extensivity as light flavors in heavy-ion collisions. The same fit is applied to the transverse momentum spectra of charmed mesons in pp(\(\overline{\text {p}}\)) collisions over a large energy range using the Tsallis–Pareto distribution. It is found that the thermal temperature increases with system energy, whereas the q parameter becomes saturated at the pp(\(\overline{\text {p}}\)) limit, \(q-1\) = 0.142 ± 0.010. In addition, the results of most peripheral Pb–Pb collisions are found to approach the pp(\(\overline{\text {p}}\)) limit, which suggests that more peripheral heavy-ion collisions are less affected by the medium and more similar to pp(\(\overline{\text {p}}\)) collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z.W. Lin, M. Gyulassy, Open charm as a probe of preequilibrium dynamics in nuclear collisions. Phys. Rev. C 51, 2177 (1995). https://doi.org/10.1103/PhysRevC.51.2177

    Article  ADS  Google Scholar 

  2. M. Cacciari, P. Nason, R. Vogt, QCD predictions for Charm and Bottom quark production at RHIC. Phys. Rev. Lett. 95, 122001 (2005). https://doi.org/10.1103/PhysRevLett.95.122001

    Article  ADS  Google Scholar 

  3. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Measurements of \(D^0\) Azimuthal anisotropy at midrapidity in Au + Au Collisions at \(\sqrt{S_{NN}}\) = 200 GeV. Phys. Rev. Lett. (2017). https://doi.org/10.1103/PhysRevLett.118.212301

  4. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Measurements of \(D^0\) Meson nuclear modifications in Au + Au collisions at \(\sqrt{S_{NN}}\) = 200 GeV. Phys. Rev. Lett. (2014). https://doi.org/10.1103/PhysRevLett.113.142301

  5. J. Adams, L. Adamczyk, J.R. Adams et al., Centrality and transverse momentum dependence of \(D^0\)-meson production at mid-rapidity in Au + Au Collisions at \(\sqrt{S_{NN}}\) = 200 GeV. Phys. Rev. C 31, 81 (2020). https://doi.org/10.1103/PhysRevC.99.034908

  6. Z.B. Tang, W.M. Zha, Y.F. Zhang, An experimental review of open heavy flavor and quarkonium production at RHIC. Nucl. Sci. Tech. 31, 81 (2019). https://doi.org/10.1007/s41365-020-00785-8

    Article  Google Scholar 

  7. C. Gale, S.Y. Jeon, B. Schenke et al., Event-by-event anisotropic flow in heavy-ion collisions from combined yang-mills and viscous fluid dynamics. Phys. Rev. Lett. 110, 012302 (2013). https://doi.org/10.1103/PhysRevLett.95.122001

    Article  ADS  Google Scholar 

  8. H. Wang, J.H. Chen, Study on open charm hadron production and angular correlation in high-energy nuclear collisions. Nucl. Sci. Tech. 32, 2 (2021). https://doi.org/10.1007/s41365-020-00839-x

    Article  Google Scholar 

  9. J.W. Qiu, X.P. Wang, H.X. Xing, Exploring J/psi production mechanism at the future electron-ion collider. Chinese Phys. Lett. 38, 041201 (2021). https://doi.org/10.1088/0256-307X/38/4/041201

    Article  ADS  Google Scholar 

  10. L. Ma, X. Dong, H.Z. Huang et al., Study of a background reconstruction method for the measurement of D-meson azimuthal angular correlations. Nucl. Sci. Tech. 32, 61 (2021). https://doi.org/10.1007/s41365-021-00896-w

    Article  Google Scholar 

  11. S.H. Zhang, R.R. Ma, Y.F. Zhang et al., Extraction of inclusive photon production at mid-rapidity in p + p and Au + Au collisions at \(\sqrt{S_{NN}}\) = 200 GeV. Nucl. Sci. Tech. 32, 7 (2021). https://doi.org/10.1007/s41365-020-00840-4

    Article  Google Scholar 

  12. H. Wang, J.H. Chen, Y.G. Ma et al., Charm hadron azimuthal angular correlations in Au + Au collisions at \(\sqrt{S_{NN}}\) = 200 GeV from parton scatterings. Nucl. Sci. Tech. 30, 185 (2019). https://doi.org/10.1007/s41365-019-0706-z

  13. J. Adams, M.M. Aggarwal, Z. Ahammed et al., Experimental and theoretical challenges in the search for the Quark Gluon Plasma: The STAR collaborations critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085

  14. K. Adcox, S.S. Adler, S. Afanasiev et al., [PHENIX Collaboration], Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086

    Article  ADS  Google Scholar 

  15. E. Schnedermann, J. Sollfrank, U.W. Heinz, Thermal phenomenology of hadrons from 200A GeV S+S collisions. Phys. Rev. C 48, 2462 (1993). https://doi.org/10.1103/PhysRevC.48.2462

    Article  ADS  Google Scholar 

  16. Z.B. Tang, Y.C. Xu, L.J. Ruan et al., Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description. Phys. Rev. C 79, 051901 (2009). https://doi.org/10.1103/PhysRevC.79.051901

    Article  ADS  Google Scholar 

  17. G. Bíró, G.G. Barnaföldi, T.S. Barnaföldi, Tsallis-thermometer: a QGP indicator for large and small collisional systems. arXiv:2003.03278 [hep-ph]

  18. A. Bazavov, T. Bhattacharya, C. DeTar et al., Equation of state in \((2+1)\)-flavor QCD. Phys. Rev. D 90, 094503 (2014). https://doi.org/10.1103/PhysRevD.90.094503

    Article  ADS  Google Scholar 

  19. Z.H. Han, B.Y. Chen, Y.P. Liu, Critical temperature of deconfinement in a constrained space using a bag model at vanishing Baryon density. Chinese Phys. Lett. 37, 112501 (2020). https://doi.org/10.1088/0256-307X/37/11/112501

    Article  ADS  Google Scholar 

  20. B. De, S. Bhattacharyya, G. Sau, S.K. Biswas, Non-extensive thermodynamics, heavy ion collisions and particle production at RHIC energies. J. Mod. Phys. E16, 1687 (2007)

    ADS  Google Scholar 

  21. G. Wilk, Z. Włodarczyk, Power laws in elementary and heavy-ion collisions—a story of fluctuations and nonextensivity? Eur. Phys. J. A 40, 299 (2009). https://doi.org/10.1140/epja/i2009-10803-9

    Article  ADS  Google Scholar 

  22. W. Alberico, A. Lavagno, Non-extensive statistics, fluctuations and correlations in high-energy nuclear collisions. Eur. Phys. J. C 12, 499 (2000). https://doi.org/10.1007/s100529900220

    Article  ADS  Google Scholar 

  23. G. Bíró, G.G. Barnaföldi,  T.S. Biró et al., Application of the non-extensive statistical approach to high energy particle collisions. AIP Conf. Proc. 1853, 080001 (2017). https://doi.org/10.1063/1.4985366

    Article  Google Scholar 

  24. C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys 52, 479 (1988). https://doi.org/10.1007/BF01016429

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, Berlin, 2009)

    MATH  Google Scholar 

  26. A.C.D. van Enter, R. Fernández and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J Stat Phys 72, 879 (1993). https://doi.org/10.1007/BF01048183

  27. G. Wilk, Z. Wlodarczyk, Interpretation of the nonextensivity parameter \(q\) in some applications of Tsallis statistics and Lévy distributions. Phys. Rev. Lett. 84, 2770 (2000). https://doi.org/10.1103/PhysRevLett.84.2770

    Article  ADS  Google Scholar 

  28. T.S. Biró, P. Ván, G.G. Barnafoldi et al., Statistical power law due to reservoir fluctuations and the universal thermostat independence principle. Entropy 16(12), 6497–6514 (2014). https://doi.org/10.3390/e16126497

    Article  ADS  Google Scholar 

  29. T.S. Biró, G.G. Barnafoldi, G. Biro et al., Near and far from equilibrium power-law statistics. J. Phys. Conf. Ser. 779, 012081 (2017). https://doi.org/10.1088/1742-6596/779/1/012081

    Article  Google Scholar 

  30. G. Wilk, Z. Włodarczyk, Consequences of temperature fluctuations in observables measured in high-energy collisions. Eur. Phys. J. A 48, 161 (2012). https://doi.org/10.1140/epja/i2012-12161-y

    Article  ADS  Google Scholar 

  31. A. Toia, ALICE measures pA collisions: Collectivity in small systems? J. Phys. Conf. Ser. 798, 012068 (2017). https://doi.org/10.1088/1742-6596/798/1/012068

  32. J.F. Grosse-Oetringhaus, Emergence of Quark-Gluon Plasma Phenomena. arXiv:2001.02880 [nucl-ex]

  33. J. Adam, D. Adamová, M.M. Aggarwal et al., Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions. Nature Phys. 13, 535 (2017). https://doi.org/10.1038/nphys4111

  34. B. Abelev, J. Adm, D. Adamova et al., [ALICE Collaboration], Long-range angular correlations on the near and away side in p-Pb collisions at \(\sqrt{S_{NN}}\) = 5.02 TeV. Phys. Lett. B 719, 29 (2013). https://doi.org/10.1016/j.physletb.2013.01.012

  35. G. Aad, T. Abajyan, B. Abbott et al., [ATLAS Collaboration], Observation of associated near-side and away-side long-range correlations in \(\sqrt{S_{NN}}\) = 5.02 TeV proton-lead collisions with the ATLAS detector. Phys. Rev. Lett. 110, 182302 (2013). https://doi.org/10.1103/PhysRevLett.110.182302

  36. V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC. J. High Energ. Phys. (2010). https://doi.org/10.1007/JHEP09(2010)091

    Article  Google Scholar 

  37. A.N. Mishra, Parton energy loss in pp collisions at very high multiplicity. arXiv:1905.06918 [hep-ph]

  38. Z. Varga, R. Vertesi, G.G. Barnafoldi, Modification of jet structure in high-multiplicity pp collisions due to multiple-parton interactions and observing a multiplicity-independent characteristic jet size. Adv. High Energy Phys. 2019, 6731362 (2019)

    Article  Google Scholar 

  39. A. Adare, S.S. Adler, S. Afanasiev et al., [PHENIX Collaboration], Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu Collisions from \(\sqrt{S_{NN}}\) = 22.5 to 200 GeV. Phys. Rev. C 78, 044902 (2008). https://doi.org/10.1103/PhysRevC.78.044902

  40. K. Aamodt, N. Abel, U. Abeysekara et al., Charged-particle multiplicity measurement in proton-proton collisions at \(\sqrt{S}\) = 7 TeV with ALICE at LHC. Eur. Phys. J. C 68, 345 (2010). https://doi.org/10.1140/epjc/s10052-010-1350-2

  41. V. Khachatryan, A.M. Sirunyan, A. Tumasyan et al., Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at \(\sqrt{S}\) = 7 TeV. Phys. Rev. Lett. 105, 022002 (2010). https://doi.org/10.1103/PhysRevLett.105.022002

  42. G. Aad, B. Abbott, J. Abdallah et al., Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC. New J. Phys. 13, 053033 (2011). https://doi.org/10.1088/1367-2630/13/5/053033

  43. T.S. Biro, A. Jakovac, Z. Schram, Nuclear and quark matter at high temperature. Eur. Phys. J. A 53, 52 (2017). https://doi.org/10.1140/epja/i2017-12235-4

    Article  ADS  Google Scholar 

  44. T.S. Biró, P. Ván, G.G. Barnafoldi et al., Statistical power law due to reservoir fluctuations and the universal thermostat independence principle. Entropy 16(12), 6497–6514 (2014)

    Article  ADS  Google Scholar 

  45. B. Abelev, A. Abrahantes Quintana, D. Adamova et al., Measurement of charm production at central rapidity in proton-proton collisions at \(\sqrt{S_{NN}}\) = 7 TeV. J. High Energ. Phys. 2012, 128 (2012). https://doi.org/10.1007/JHEP01(2012)128

  46. D. Acosta, T. Affolder, M.H. Ahn et al., [CDF II Collaboration], Measurement of prompt charm meson production cross sections in \(p\overline{p}\) collisions at \(\sqrt{s}\) = 1.96 TeV. Phys. Rev. Lett. 91, 241804 (2003). https://doi.org/10.1103/PhysRevLett.91.241804

  47. L. Adamczyk,  G. Agakishiev, M.M. Aggarwal  et al., [STAR Collaboration], Measurements of \(D^0\) and \(D^*\) production in p+p collisions at \(\sqrt{S_{NN}}\) = 200 GeV. Phys. Rev. D 86, 072013 (2012). https://doi.org/10.1103/PhysRevD.86.072013

    Article  ADS  Google Scholar 

  48. D. Tlusty, Open charm measurements in p + p collisions at STAR. J. Phys. Conf. Ser. 509(1), 012078 (2014). https://doi.org/10.1088/1742-6596/509/1/012078

    Article  Google Scholar 

  49. J. Adam, D. Adamová, M.M. Aggarwal et al., [ALICE Collaboration], Transverse momentum dependence of D-meson production in Pb-Pb collisions at \(\sqrt{S_{NN}}\) = 2.76 TeV. J. High Energ. Phys. 2016 81 (2016). https://doi.org/10.1007/JHEP03(2016)081

  50. S. Acharya, F.T. Acosta, D. Adamova et al., [ALICE Collaboration], Measurement of \(D^0\), \(D^+\), \(D^{*+}\) and \(D_{s}^{+}\) production in Pb-Pb collisions at \(\sqrt{S_{NN}}\) = 5.02 TeV. J. High Energ. Phys. 2018, 174 (2018). https://doi.org/10.1007/JHEP10(2018)174

  51. S. Acharya, D. Adamova, S.P. Adhya et al., [ALICE Collaboration], Production of charged pions, kaons and (anti-)protons in Pb-Pb and inelastic pp collisions at \(\sqrt{S_{NN}}\) = 5.02 TeV. Phys. Rev. C 101, 044907 (2020). https://doi.org/10.1103/PhysRevC.101.044907

  52. B. Abelev, J. Adam, D. Adamova et al., [ALICE Collaboration], Centrality dependence of \(\pi\), K, and p production in Pb-Pb collisions at \(\sqrt{S_{NN}}\) = 2.76 TeV. Phys. Rev. C 88, 044910 (2013). https://doi.org/10.1103/PhysRevC.88.044910

  53. T. Csörgő, B. Lörstad, J. Zimányi, Quantum statistical correlations for slowly expanding systems. Phys. Lett. B 338, 134 (1994). https://doi.org/10.1016/0370-2693(94)91356-0

    Article  ADS  Google Scholar 

  54. J. Helgesson, T. Csörgő, M. Asakawa et al., Quantum statistical correlations and single-particle distributions for slowly expanding systems with temperature profile. Phys. Rev. C 56, 2626 (1997). https://doi.org/10.1103/PhysRevC.56.2626

    Article  ADS  Google Scholar 

  55. M. Waqas, F.H. Liu, L.L. Li et al., Effective (kinetic freeze-out) temperature, transverse flow velocity, and kinetic freeze-out volume in high energy collisions. Nucl. Sci. Tech. 31, 109 (2020). https://doi.org/10.1007/s41365-020-00821-7

    Article  Google Scholar 

  56. G.D. Moore, D. Teaney, How much do heavy quarks thermalize in a heavy ion collision? Phys. Rev. C 71, 064904 (2005). https://doi.org/10.1103/PhysRevC.71.064904

    Article  ADS  Google Scholar 

  57. T. Csörgő, S.V. Akkelin, Y. Hama et al., Observables and initial conditions for self-similar ellipsoidal flows. Phys. Rev. C 67, 034904 (2003). https://doi.org/10.1103/PhysRevC.67.034904

    Article  ADS  Google Scholar 

  58. A. Adare, S. Afanasiev, C. Aidala et al., [PHENIX Collaboration], Identified charged hadron production in p+p collisions at \(\sqrt{S_{NN}}\) = 200 and 62.4 GeV. Phys. Rev. C 83, 064903 (2011). https://doi.org/10.1103/PhysRevC.83.064903

  59. H.R. Wei, F.H. Liu, R.A. Lacey, Kinetic freeze-out temperature and flow velocity extracted from transverse momentum spectra of final-state light flavor particles produced in collisions at RHIC and LHC. Eur. Phys. J. A 52, 102 (2016). https://doi.org/10.1140/epja/i2016-16102-6

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yuan Su, Xiao-Long Chen, Yong-Jie Sun, and Yi-Fei Zhang. The first draft of the manuscript was written by Yuan Su and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yi-Fei Zhang.

Additional information

This is supported by the National Key Research and Development Program of China (Nos. 2018YFE0205200 and 2018YFE0104700), National Natural Science Foundation of China (Nos. 11890712 and 12061141008), Strategic Priority Research Program of CAS (No. XDB34030000), and Anhui Provincial Natural Science Foundation (No. 1808085J02).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Sun, YJ., Zhang, YF. et al. Non-extensive statistical distributions of charmed meson production in Pb–Pb and pp(\(\overline{\text {p}}\)) collisions. NUCL SCI TECH 32, 108 (2021). https://doi.org/10.1007/s41365-021-00945-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00945-4

Keywords

Navigation