Skip to main content
Log in

An initial study on liner-like Z-pinch loads with a novel configuration on Qiangguang-I facility

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A series of liner-like Z-pinch loads with a novel configuration have been investigated experimentally for the first time on Qiangguang-I facility in China. The metallic layer is sputtered on the inner surface of the cylindrical SiO2 substrate tube. In the preliminary experiment, the electric current flowed through the metallic load during the prepulse. However, the currents also flowed through the outer surface of the SiO2 substrate during the main pulse. After the dielectric length had been increased in the formal experiment, most of the current flowed through the metallic load until radial radiation peak was measured by radiation monitor. As the line mass of the metallic load increases, the peak time of radial radiation also increases. Axial ultraviolet frames indicate that the radiations are nearly azimuthally uniform at first, but the uniformity becomes worse after radial radiation peak. The clearly separated boundary between the metal plasmas and the substrate has not been observed in the experiment. Experimental results are discussed and compared with simulation using the one-dimension radiation hydrodynamics code MULTI-IFE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.G. Haines, A review of the dense Z-pinch. Plasma Phys. Control. Fusion 53, 093001 (2011). https://doi.org/10.1088/0741-3335/53/9/093001

    Article  ADS  Google Scholar 

  2. Z. Wang, Z.H. Li, R.K. Xu et al., X-ray radiation power optimization in 1 MA to 4 MA wire-array implosions. Acta Phys. Sin. 60(2), 025209 (2011). https://doi.org/10.7498/aps.60.025209

    Article  Google Scholar 

  3. Z.C. Huang, J.L. Yang, R.K. Xu et al., Axially resolved radiation of tungsten wire-array Z-pinches on JULONG-I. High Energy Density Phys. 21(1), 1–7 (2016). https://doi.org/10.1016/j.hedp.2016.09.001

    Article  ADS  Google Scholar 

  4. G.X. Xia, F.Q. Zhang, Z.P. Xu et al., Radiation characteristics of single wire array Z-pinch implosion. Acta Phys. Sin. 59(1), 97–102 (2010). https://doi.org/10.7498/aps.59.97(inChinese)

    Article  Google Scholar 

  5. F. Ye, F.B. Xue, Y.Y. Chu et al., Experimental study on current division of nested wire array Z pinches. Acta Phys. Sin. 62(17), 175203 (2013). https://doi.org/10.7498/aps.62.175203(inChinese)

    Article  Google Scholar 

  6. S.Q. Jiang, F. Ye, J.L. Yang et al., Implosion characteristics of conical wire array Z pinches on “ Qiangguang1” facility. Acta Phys. Sin. 61(19), 195205 (2012). https://doi.org/10.7498/aps.61.195205

    Article  Google Scholar 

  7. F. Ye, Z.H. Li, F.X. Chen et al., Investigation of ablation of thin foil aluminum ribbon array at 1.5 MA. Phys. Plasmas 23(6), 064502 (2016). https://doi.org/10.1063/1.4952620

    Article  Google Scholar 

  8. Y.Y. Chu, Z.H. Li, J.L. Yang et al., Simulation of the quasi-spherical wire-array implosion dynamics based on a multi-element model. Plasma Phys. Control. Fusion 54(10), 105020 (2012). https://doi.org/10.1088/0741-3335/54/10/105020

    Article  ADS  Google Scholar 

  9. Y. Zhang, N. Ding, Z.H. Li et al., Numerical study of quasi-spherical wire-array implosions on the Qiangguang-I facility. IEEE T. Plasma Sci. 40(12), 3360–3366 (2012). https://doi.org/10.1109/TPS.2012.2219075

    Article  ADS  Google Scholar 

  10. F.Y. Wu, Y.Y. Chu, R. Ramis et al., Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum. Matter Radiat. Extrem. 3(5), 248 (2018). https://doi.org/10.1016/j.mre.2018.06.001

    Article  Google Scholar 

  11. X.J. Peng, Z. Wang, Conceptual research on z-pinch driven fusion-fission hybrid reactor. High Power Laser Part. Beams. 26(9), 090201 (2014). https://doi.org/10.11884/HPLPB201426.090201

    Article  Google Scholar 

  12. Y.K. Zhao, B.Y. Ouyang, W. Wen et al., Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Phys. Sin. 64(4), 045205 (2015). https://doi.org/10.7498/aps.64.045205(inChinese)

    Article  Google Scholar 

  13. J.C. Cochrane, R.R. Bartsch, J.F. Benage et al., Direct drive foil implosion experiments on Pegasus II. AIP Conf. Proc. 299(1), 381–387 (1994). https://doi.org/10.1063/1.2949181

    Article  ADS  Google Scholar 

  14. J.H. Degnan, W.L. Baker, M.L. Alme et al., Multimegajoule electromagnetic implosion of shaped solid-density liners. Fusion Technol. 27(2), 115–123 (1995). https://doi.org/10.1016/0920-3796(95)90112-4

    Article  Google Scholar 

  15. J.H. Degnan, F.M. Lehr, J.D. Beason et al., Electromagnetic implosion of spherical liner. Phys. Rev. Lett. 74, 98 (1995). https://doi.org/10.1103/PhysRevLett.74.98

    Article  ADS  Google Scholar 

  16. K.J. Peterson, D.B. Sinars, E.P. Yu et al., Electrothermal instability growth in magnetically driven pulsed power liners. Phys. Plasmas 19(9), 092701 (2012). https://doi.org/10.1063/1.4751868

    Article  ADS  Google Scholar 

  17. K.J. Peterson, E.P. Yu, D.B. Sinars et al., Simulations of electrothermal instability growth in solid aluminum rods. Phys. Plasmas 20(5), 056305 (2013). https://doi.org/10.1063/1.4802836

    Article  ADS  Google Scholar 

  18. K.J. Peterson, T.J. Awe, E.P. Yu et al., Electrothermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors. Phys. Rev. Lett. 112(13), 135002 (2014). https://doi.org/10.1103/PhysRevLett.112.135002

    Article  ADS  Google Scholar 

  19. A.C. Qiu, K. Bin, Z.Z. Zeng et al., Study on W wire array Z pinch plasma radiation at qiangguang-I facility. Acta Phys. Sin. 55(11), 5917–5922 (2006). https://doi.org/10.7498/aps.55.5917(inChinese)

    Article  Google Scholar 

  20. T. Huang, P.T. Cong, G.W. Zhang et al., Circuit simulation and analysis for Qiangguang-I Accelerator. High Power Laser and Particle Beams 22(4), 897–900 (2010). https://doi.org/10.3788/HPLPB20102204.0897(inChinese)

    Article  Google Scholar 

  21. J.S. Du, J.H. Wu, L.L. Zhao et al., Coloration of glasses induced by space ionizing radiation. J. Inorg. Mater. 27(4), 411–416 (2012). https://doi.org/10.3724/SP.J.1077.2012.00411

    Article  Google Scholar 

  22. P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications[J]. Vacuum 56(3), 159–172 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X

    Article  ADS  Google Scholar 

  23. Q. Yi, Q.S. Huang, X.M. Wang et al., Structure and extreme ultraviolet performance of Si/C multilayers deposited under different working pressures. Appl. Opt. 56(4), C145–C150 (2017). https://doi.org/10.1364/AO.56.00C145

    Article  Google Scholar 

  24. Z.C. Huang, J.L. Yang, R.K. Xu et al., Design of flat response plastic scintillator. High Power Laser and Part. Beams. 28(11), 28112001 (2016). https://doi.org/10.11884/HPLPB201628.160133

    Article  Google Scholar 

  25. Q.Y. Hu, J.M. Ning, F. Ye et al., Applications of thin film plastic scintillator in measurement of soft x rays generated from Z-pinch implosion. Rev. Sc. Instrum. 89(10), 103112 (2018). https://doi.org/10.1063/1.5049449

    Article  ADS  Google Scholar 

  26. F.X. Chen, J.H. Feng, L.B. Li et al., Study of Z-pinch dynamic hohlraum shadowgraphy. Acta Phys. Sin. 62(4), 45204–045204 (2013). https://doi.org/10.7498/aps.62.045204

    Article  Google Scholar 

  27. H.W. Xie, F.X. Chen, Q. Yi et al., Application of ultraviolet laser probe in Z-pinch. High Power Laser and Part. Beams. 29(04), 29042001 (2017). https://doi.org/10.11884/HPLPB201729.160506

    Article  Google Scholar 

  28. N. Guo, L.P. Wang, J.J. Han et al., Differential loop for measuring 1 MA/100 ns pulsed high current. High Power Laser and Part. Beams 24(3), 519–523 (2012). https://doi.org/10.3788/HPLPB20122403.0519

    Article  Google Scholar 

  29. C. Li, X. Li, K.H. Zhang et al., Femtosecond laser induced breakdown in fused silica by linearly, circularly and elliptically polarized lasers. Acta Photonica Sinica. 43(1), 0132002 (2014). https://doi.org/10.3788/gzxb201443s1.0132002

    Article  Google Scholar 

  30. R. Rafael, R. Schmalz, J. Meyer-ter-Vehn, MULTI—A computer code for one-dimensional multigroup radiation hydrodynamics. Comput. Phys. Commun. 49(3), 475–505 (1988). https://doi.org/10.1016/0010-4655(88)90008-2

    Article  ADS  Google Scholar 

  31. F.Y. Wu, R. Ramis, Z.H. Li et al., Numerical Simulation of the Interaction Between Z-Pinch Plasma and Foam Converter Using Code MULTI (#8353). Fusion Sci. Technol. 72(4), 726–730 (2017). https://doi.org/10.1080/15361055.2017.1347458

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the operating team on Qiangguang-I facility for ensuring the experimental conditions, the load fabrication team at Tongji University for their technical support, and the developers of the 1-D MULTI program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Fa-Xin Chen, Fan Ye, Xiao-Song Yan, Fu-Yuan Wu, and Zhan-Chang Huang. The first draft of the manuscript was written by Zhan-Chang Huang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhan-Chang Huang.

Additional information

This work was supported by National Natural Science Foundation of China (No. 11805175).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, ZC., Meng, SJ., Xu, ZP. et al. An initial study on liner-like Z-pinch loads with a novel configuration on Qiangguang-I facility. NUCL SCI TECH 32, 100 (2021). https://doi.org/10.1007/s41365-021-00928-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00928-5

Keywords

Navigation