Skip to main content
Log in

Development and high-gradient test of a two-half accelerator structure

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

This paper reports on the design, fabrication, RF measurement, and high-power test of a prototype accelerator—such as 11.424 GHz with 12 cells—and a traveling wave of two halves. It was found that the unloaded gradient reached 103 MV/m during the high-power test and the measured breakdown rate, after \(3.17\times 10^7\) pulses, was \(1.62\times 10^{-4}\)/pulse/m at 94 MV/m and a 90 ns pulse length. We thus concluded that the high-gradient two-half linear accelerator is cost-effective, especially in high-frequency RF linear acceleration. Finally, we suggest that silver-based alloy brazing can further reduce costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Filtz, in: Proceeding of European Particle Accelerator Conference, London, Analytical calculation of waves in a muffin–tin structure. (1994), pp. 1271–1273

  2. R. Sundelin, J. Kirchgessner, H. Padamsee et al., Application of superconducting rf accelerating sections to an electron synchrotron. a progress report. Technical report (1974)

  3. R. Merte, Improved shape of an input/output wave guide with integrated taper for w-band muffin tin wband-003. Technical Note 140 (1998)

  4. R. Merte, Improved design of w-band muffin tin wband-003. Technical Note 144 (1998)

  5. P. Chou, G. Bowden, M. Copeland et al., in: Proceedings of the 1997 Particle Accelerator Conference (Cat. No. 97CH36167), Design and fabrication of a traveling-wave muffin-tin accelerating structure at 90 ghz. Vol. 1, IEEE, (1997), pp. 464–466. https://doi.org/10.1109/PAC.1997.749688

  6. S. Kuzikov, A. Fedotov, N.Y. Peskov et al., in: AIP Conference Proceedings, Millimeter and submillimeter-wave, high-gradient accelerating structures. Vol. 1812, AIP Publishing LLC, (2017), p. 060002. https://doi.org/10.1063/1.4975869

  7. M. Dal Forno, V. Dolgashev, G. Bowden et al., Rf breakdown tests of mm-wave metallic accelerating structures. Phys. Rev. Accel. Beams 19, 011301 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.011301

    Article  Google Scholar 

  8. M. Dal Forno, V. Dolgashev, G. Bowden et al., High gradient tests of metallic mm-wave accelerating structures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 864, 12–28 (2017). https://doi.org/10.1016/j.nima.2017.05.014

    Article  Google Scholar 

  9. M. Dal Forno, V. Dolgashev, G. Bowden et al., Measurements of electron beam deflection and rf breakdown rate from a surface wave guided in metallic mm-wave accelerating structures. Phys. Rev. Accel. Beams 21, 091301 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.091301

    Article  Google Scholar 

  10. M.A. Othman, J. Picard, S. Schaub et al., Experimental demonstration of externally driven millimeter-wave particle accelerator structure. Appl. Phys. Lett. 117, 073502 (2020). https://doi.org/10.1063/5.0011397

    Article  Google Scholar 

  11. D. Palmer, M. Hill, S. Schwartzkopf et al., in: Proceedings of the 1999 Particle Accelerator Conference (Cat. No. 99CH36366), Materials research related to w-band cavity construction. Vol. 1, IEEE, (1999), pp. 545–547

  12. T. Abe, Y. Arakida, T. Higo et al., in: International Workshop on Breakdown Science and High Gradient Technology (HG2015) (Tsinghua University, China, Basic Study on High-Gradient Accelerating Structures at Kek/Nextef, 2015)

  13. M. Aicheler, P. Burrows, M. Draper et al., A multi-TeV linear collider based on clic technology: CLIC conceptual design report. CERN, Geneva, Switzerland, Rep. CERN-2012-007 (2012). https://doi.org/10.5170/CERN-2012-007

  14. T. Argyropoulos, N. Catalan-Lasheras, A. Grudiev et al., Design, fabrication, and high-gradient testing of an x-band, traveling-wave accelerating structure milled from copper halves. Phys. Rev. Accel. Beams 21, 061001 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.061001

    Article  Google Scholar 

  15. H. Zha, A. Grudiev, Design of the compact linear collider main linac accelerating structure made from two halves. Phys. Rev. Accel. Beams 20, 042001 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.042001

    Article  Google Scholar 

  16. H. Zha, J. Shi, H. Chen et al., Choke-mode damped structure design for the compact linear collider main linac. Phys. Rev. Spec. Top. Accel. Beams 15, 122003 (2012). https://doi.org/10.1103/PhysRevSTAB.15.122003

    Article  Google Scholar 

  17. X. Wu, J. Shi, H. Chen et al., High power test of x-band single cell hom-free choke-mode damped accelerating structure made by Tsinghua university. Technical report (2016) https://cds.cern.ch/record/2207494/files/thpor043.pdf

  18. X. Wu, T. Abe, H. Chen et al., in: 8th International Particle Accelerator Conference (IPAC’17), Copenhagen, Denmark, 14–19 May, High-gradient breakdown studies of x-band choke-mode structures. JACOW, Geneva, Switzerland 2017, 1322–1325 (2017)

  19. V. Khan, A. D’Elia, R. Jones et al., Wakefield and surface electromagnetic field optimisation of manifold damped accelerating structures for clic. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 657, 131–139 (2011). https://doi.org/10.1016/j.nima.2011.06.045

    Article  Google Scholar 

  20. L. Laurent, S. Tantawi, V. Dolgashev et al., Experimental study of rf pulsed heating. Phys. Rev. Spec. Top. Accel. Beams 14, 041001 (2011). https://doi.org/10.1103/PhysRevSTAB.14.041001

    Article  Google Scholar 

  21. P. Zhang, Effects of surface roughness on electrical contact, rf heating and field enhancement. Ph.D. thesis (2012)

  22. A. Grudiev, S. Calatroni, W. Wuensch, New local field quantity describing the high gradient limit of accelerating structures. Phys. Rev. Spec. Top. Accel. Beams 12, 102001 (2009). https://doi.org/10.1103/PhysRevSTAB.12.102001

    Article  Google Scholar 

  23. C.W. Steele, A nonresonant perturbation theory. IEEE Trans. Microw. Theory Tech. 14, 70–74 (1966). https://doi.org/10.1109/TMTT.1966.1126168

    Article  Google Scholar 

  24. M. Peng, D. Cao, W. Gai et al., in: 9th International Particle Accelerator Conference (IPAC’18), Vancouver, BC, Canada, April 29-May 4, Development of tsinghua x-band high power test facility. JACOW Publishing, Geneva, Switzerland 2018, 3999–4001 (2018). https://doi.org/10.18429/JACoW-IPAC2018-THPAL150

  25. Y. Jiang, J. Shi, P. Wang et al., in: 8th International Particle Accelerator Conference (IPAC’17), Copenhagen, Denmark, 14–19 May, The x-band pulse compressor for tsinghua thomson scattering x-ray source. JACOW, Geneva, Switzerland 2017, 4214–4217 (2017)

  26. X. Meng, H. Chen, C. Cheng et al., in: 7th International Particle Accelerator Conference (IPAC’16), Busan, Korea, May 8–13, Development of s-band high power load. JACOW, Geneva, Switzerland 2016, 383–385 (2016)

  27. X. Meng, J. Shi, H. Zha et al., Development of high-power s-band load. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 927, 209–213 (2019). https://doi.org/10.1016/j.nima.2019.02.002

    Article  Google Scholar 

  28. J.Y. Liu, J.R. Shi, H. Zha et al., Analytic rf design of a linear accelerator with a sled-i type rf pulse compressor. Nucl. Sci. Tech. 31, 107 (2020). https://doi.org/10.1007/s41365-020-00815-5

    Article  Google Scholar 

  29. T. Higo, Y. Higashi, S. Matsumoto et al., in: Conference on Proceedings C100523: THPEA013, 2010, Advances in x-band tw accelerator structures operating in the 100 mv/m regime. No. SLAC-PUB-15150, SLAC National Accelerator Lab., Menlo Park, CA (United States), (2012)

  30. A. Degiovanni, W. Wuensch, J.G. Navarro, Comparison of the conditioning of high gradient accelerating structures. Phys. Rev. Accel. Beams 19, 032001 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.032001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Mao-Mao Peng, Jia-Ru Shi, Hao Zha, Xian-Cai Lin, Ze-Ning Liu, Yu-Liang Jiang, Jian Gao, Liu-Yuan Zhou, Fo-Cheng Liu, Xiang-Cong Meng, and Huai-Bi Chen. The first draft of the manuscript was written by Mao-Mao Peng, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hao Zha.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11922504).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, MM., Shi, JR., Zha, H. et al. Development and high-gradient test of a two-half accelerator structure. NUCL SCI TECH 32, 60 (2021). https://doi.org/10.1007/s41365-021-00895-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00895-x

Keywords

Navigation