Skip to main content
Log in

First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of \(^{23}\)Na + \(^{40}\)Ca elastic scattering

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The reaction dynamics of exotic nuclei near the drip line is one of the main research topics of current interest. Elastic scattering is a useful probe for investigating the size and surface diffuseness of exotic nuclei. The development of rare isotope accelerators offers opportunities for such studies. To date, many relevant measurements have been performed at accelerators using the projectile fragmentation technique, while the measurements at accelerators using isotope separator on-line (ISOL) systems are still quite scarce. In this work, we present the first proof-of-principle experiment with a post-accelerated ISOL beam at the Beijing Radioactive Ion Beam Facility (BRIF) by measuring the angular distribution of elastic scattering for the stable nucleus \(^{23}\)Na from the doubly magic nucleus \(^{40}\)Ca at energies above the Coulomb barrier. The angular distribution measured by a silicon strip detector array in a scattering chamber using the ISOL beam at BRIF is in good agreement with that measured by the high-precision Q3D magnetic spectrograph using the non-ISOL beam at nearly the same energy. This work provides useful background for making BRIF a powerful tool for the investigation of the reaction dynamics of exotic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Keeleya, R. Raabe, N. Alamanos et al., Fusion and direct reactions of halo nuclei at energies around the Coulomb barrier. Prog. Part. Nucl. Phys. 59, 579 (2007). https://doi.org/10.1016/j.ppnp.2007.02.002

    Article  Google Scholar 

  2. N. Keeleya, N. Alamanos, K.W. Kemper et al., Elastic scattering and reactions of light exotic beams. Prog. Part. Nucl. Phys. 63, 396 (2009). https://doi.org/10.1016/j.ppnp.2009.05.003

    Article  Google Scholar 

  3. B.B. Back, H. Esbensen, C.L. Jiang et al., Recent developments in heavy-ion fusion reactions. Rev. Mod. Phys. 86, 317 (2014). https://doi.org/10.1103/RevModPhys.86.317

    Article  Google Scholar 

  4. Y.Y. Yang, J.S. Wang, Q. Wang et al., Elastic scattering of the proton drip-line nucleus \(^8\)B off a \({}^{\rm nat}\)Pb target at 170.3 MeV. Phys. Rev. C 87, 044613 (2013). https://doi.org/10.1103/PhysRevC.87.044613

  5. L. Acosta, A.M. Sanchez-Benitez, M.E. Gomez et al., Elastic scattering and \(\alpha\)-particle production in \(^6\)He+\(^{208}\)Pb collisions at 22 MeV. Phys. Rev. C 84, 044604 (2011). https://doi.org/10.1103/PhysRevC.84.044604

  6. M. Cubero, J.P. Fernandez-Garcia, M. Rodriguez-Gallardo et al., Do Halo Nuclei Follow Rutherford Elastic Scattering at Energies Below the Barrier? The Case of \(^{11}\)Li. Phys. Rev. Lett. 109, 262701 (2012). https://doi.org/10.1103/PhysRevLett.109.262701

  7. A. Lemasson, A. Shrivastava, A. Navin et al., Modern Rutherford experiment: Tunneling of the most neutron-rich nucleus. Phys. Rev. Lett. 103, 232701 (2009). https://doi.org/10.1103/PhysRevLett.103.232701

    Article  Google Scholar 

  8. G. Marquínez-Durán, I. Martel, A.M. Sanchez-Benitez et al., Precise measurement of near-barrier \(^8\)He+\(^{208}\)Pb elastic scattering: comparison with \(^6\)He. Phys. Rev. C 94, 064618 (2016). https://doi.org/10.1103/PhysRevC.94.064618

  9. K.J. Cook, I.P. Carter, E.C. Simpson et al., Interplay of charge clustering and weak binding in reactions of \(^8\)Li. Phys. Rev. C 97, 021601(R) (2018). https://doi.org/10.1103/PhysRevC.97.021601

  10. A. Di Pietro, G. Randisi, V. Scuderi et al., Elastic scattering and reaction mechanisms of the halo nucleus \(^{11}\)Be around the Coulomb barrier. Phys. Rev. Lett. 105, 022701 (2010). https://doi.org/10.1103/PhysRevLett.105.022701

  11. V. Pesudo, M.J.G. Borge, A.M. Moro et al., Scattering of the halo nucleus \(^{11}\)Be on \(^{197}\)Au at energies around the Coulomb barrier. Phys. Rev. Lett. 118, 152502 (2017). https://doi.org/10.1103/physrevlett.118.152502

  12. F.F. Duan, Y.Y. Yang, K. Wang et al., Scattering of the halo nucleus \(^{11}\)Be from a lead target at 3.5 times the Coulomb barrier energy. Phys. Lett. B 811, 135942 (2020). https://doi.org/10.1016/j.physletb.2020.135942

  13. Y.Y. Yang, X. Liu, D.Y. Pang et al., Elastic scattering of the proton drip line nuclei \(^7\)Be, \(^8\)B, and \(^9\)C on a lead target at energies around three times the Coulomb barriers. Phys. Rev. C 98, 044608 (2018). https://doi.org/10.1103/PhysRevC.98.044608

  14. M. Mazzocco, N. Keeley, A. Boiano et al., Elastic scattering for the \(^8\)B and \(^7\)Be+\(^{208}\)Pb systems at near-Coulomb barrier energies. Phys. Rev. C 100, 024602 (2019). https://doi.org/10.1103/PhysRevC.100.024602

  15. J.C. Blackmon, F. Carstoiu, L. Trache et al., Elastic scattering of the proton drip-line nucleus \(^{17}\)F. Phys. Rev. C 72, 034606 (2005). https://doi.org/10.1103/PhysRevC.72.034606

  16. L. Yang, C.J. Lin, H. Yamaguchi et al., Insight into the reaction dynamics of proton drip-line nuclear system \(^{17}\)F + \(^{58}\)Ni at near-barrier energies. Phys. Lett. B 813, 136045 (2021). https://doi.org/10.1016/j.physletb.2020.136045

  17. G.L. Zhang, G.X. Zhang, C.J. Lin et al., Angular distribution of elastic scattering induced by \(^{17}\)F on medium-mass target nuclei at energies near the Coulomb barrier. Phys. Rev. C 97, 044618 (2018). https://doi.org/10.1103/PhysRevC.97.044618

  18. J.F. Liang, J.R. Beene, H. Esbensen et al., Elastic scattering and breakup of \(^{17}\)F at 10 MeV/nucleon. Phys. Rev. C 65, 051603(R) (2002). https://doi.org/10.1103/PhysRevC.65.051603

  19. M. Romoli, E. Vardaci, M. Di Pietro et al., Measurements of \(^{17}\)F scattering by \(^{208}\)Pb with a new type of large solid angle detector array. Phys. Rev. C 69, 064614 (2004). https://doi.org/10.1103/PhysRevC.69.064614

  20. Z. Sun, W.-L. Zhan, Z.-Y. Guo et al., The radioactive ion beam line in Lanzhou. Nucl. Instrum. Methods Phys. Res. Sect. A 503, 496 (2003). https://doi.org/10.1016/S0168-9002(03)01005-2

    Article  Google Scholar 

  21. Z.H. Yang, Y.L. Ye, Z.H. Li et al., Observation of enhanced monopole strength and clustering in \(^{12}\)Be. Phys. Rev. Lett. 112, 162501 (2014). https://doi.org/10.1103/PhysRevLett.112.162501

  22. Y. Liu, Y.L. Ye, J.L. Lou et al., Positive-parity linear-chain molecular band in \(^{16}\)C. Phys. Rev. Lett. 124, 192501 (2020). https://doi.org/10.1103/PhysRevLett.124.192501

  23. X.X. Xu, C.J. Lin, L.J. Sun et al., Observation of \(\beta\)-delayed two-proton emission in the decay of \(^{22}\)Si. Phys. Lett. B 766, 312 (2017). https://doi.org/10.1016/j.physletb.2017.01.028

  24. Y.T. Wang, D.Q. Fang, K. Wang et al., Observation of \(\beta\)-delayed \(^2\)He emission from the proton-rich nucleus \(^{22}\)Al. Phys. Lett. B 784, 12 (2018). https://doi.org/10.1016/j.physletb.2018.07.034

  25. J. Su, W.P. Liu, N.T. Zhang et al., Revalidation of the isobaric multiplet mass equation at \(A\)=53, \(T\)=3/2. Phys. Lett. B 756, 323 (2016). https://doi.org/10.1016/j.physletb.2016.03.024

  26. G.L. Zhang, Y.J. Yao, G.X. Zhang et al., A detector setup for the measurement of angular distribution of heavy-ion elastic scattering with low energy on RIBLL. Nucl. Sci. Tech. 28, 104 (2017). https://doi.org/10.1007/s41365-017-0249-0

    Article  Google Scholar 

  27. F.F. Duan, Y.Y. Yang, B.T. Hu et al., Silicon detector array for radioactive beam experiments at HIRFL-RIBLL. Nucl. Sci. Tech. 29, 165 (2018). https://doi.org/10.1007/s41365-018-0499-5

    Article  Google Scholar 

  28. W.P. Liu, Z.H. Li, X.X. Bai et al., Current progress of nuclear astrophysics study and BRNBF at CIAE. Nucl. Instrum. Methods Phys. Res. Sect. B 204, 62 (2003). https://doi.org/10.1016/S0168-583X(02)01892-X

    Article  Google Scholar 

  29. B. Guo, W.P. Liu, Beijing radioactive ion beam facility and basic nuclear physics research prospects (in Chinese). Chin. Sci. Bull. 60, 1820–1827 (2015). https://doi.org/10.1360/N972014-01209

    Article  Google Scholar 

  30. T.J. Zhang, Z.G. Li, Z.G. Yin et al., Design and construction status of CYCIAE-100, a 100 MeV H\(^-\) cyclotron for RIB production. Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4117 (2008). https://doi.org/10.1016/j.nimb.2008.05.021

  31. B.Q. Cui, Z.H. Peng, Y.J. Ma et al., Status of Beijing radioactive ion beam facility. Res. Sect. B 266, 4113 (2008). https://doi.org/10.1016/j.nimb.2008.05.154

    Article  Google Scholar 

  32. Y.B. Wang, J. Su, Z.Y. Han et al., Direct observation of the exotic \(\beta\)-\(\gamma\)-\(\alpha\) decay mode in the \(T_z\) = 1 nucleus \(^{20}\)Na. Phys. Rev. C 103, L011301 (2021). https://doi.org/10.1103/PhysRevC.103.L011301

  33. Y.P. Shen, B. Guo, T.L. Ma, First experimental constraint of the spectroscopic amplitudes for the \(\alpha\)-cluster in the \(^{11}\)B ground state. Phys. Lett. B 797, 134820 (2019). https://doi.org/10.1016/j.physletb.2019.134820

  34. Y.P. Shen, B. Guo, R.J. de Boer, Constraining the External Capture to the \(^{16}\)O Ground State and the E2 S Factor of the \(^{12}\)C(\(\alpha\), \(\gamma\))\(^{16}\)O Reaction. Phys. Rev. Lett. 124, 162701 (2020). https://doi.org/10.1103/PhysRevLett.124.162701

  35. D.Y. Pang, Y.L. Ye, F.R. Xu, Application of the Bruyeres Jeukenne–Lejeune–Mahaux model potential to composite nuclei with a single-folding approach. Phys. Rev. C 83, 064619 (2011). https://doi.org/10.1103/PhysRevC.83.064619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to the study conception and design. Experiment was carried out by Wei Nan, Cheng-Jian Lin, Lei Yang, Dong-Xi Wang, Yang-Ping Shen, Hui-Ming Jia, Yun-Ju Li, and Xin-Yue Li. Targets were made by Qi-Wen Fan. Data analysis was performed by Wei Nan, Bing Guo, Cheng-Jian Lin, Yang-Ping Shen, Dan-Yang Pang, and Wei-Ping Liu. The ISOL beam was developed by Bing Tang, Bao-Qun Cui, Tao Ge, Yin-Long Lyu, Li-Hua Chen, Jian-Cheng Liu, Rui-Gang Ma, Xie Ma, Ying-Jun Ma, and Tian-Jue Zhang. The first draft of the manuscript was written by Wei Nan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bing Guo, Cheng-Jian Lin or Wei-Ping Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11490561, 11635015, 11961141003, 11805280, 11975316, 12075045, 12005304, U1867212, and U1867214), the National Key Research and Development Project (Nos. 2016YFA0400502 and 2018YFA0404404), the Continuous Basic Scientific Research Project (No. WDJC-2019-13), and the Leading Innovation Project (Nos. LC192209000701 and LC202309000201).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, W., Guo, B., Lin, CJ. et al. First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of \(^{23}\)Na + \(^{40}\)Ca elastic scattering. NUCL SCI TECH 32, 53 (2021). https://doi.org/10.1007/s41365-021-00889-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00889-9

Keywords

Navigation