Skip to main content
Log in

Calculation of effective point reactor kinetic parameters combined with the Galerkin finite element method

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Precise point reactor kinetic parameters are essential in the study of reactor dynamics. Point reactor kinetic parameters include the effective delayed neutron fraction and prompt neutron lifetime. In this work, effective point reactor kinetic parameters, which can be applied to unstructured grids, were calculated based on the Galerkin finite element method. First, two-dimensional and three-dimensional benchmarks were used to verify the calculation of steady-state neutronic parameters. Then, the Tehran research reactor core was divided into hexahedral meshes, and the forward flux and adjoint flux were calculated. Finally, the effective point reactor kinetic parameters of the Tehran research reactor were obtained by comprehensively processing the steady-state neutronic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Hébert, Application of a dual variational formulation to finite element reactor calculations. Ann. Nucl. Energy 20(12), 823–845 (1993). https://doi.org/10.1016/0306-4549(93)90076-2

    Article  Google Scholar 

  2. L.A. Semenza, E.E. Lewis, E.C. Rossow, The application of the finite element method to the multigroup neutron diffusion equation. Nucl. Sci. Eng. 47(3), 302–310 (1972). https://doi.org/10.13182/NSE72-A22416

    Article  Google Scholar 

  3. Y. Naito, R. Kawamura, Y. Tokuno et al., A computer program for solving the three-dimensional multigroup diffusion equation by finite element method with 20-node isoparametric element (FEM3DJAR). Prog. Nucl. Energy 18(1–2), 207–214 (1986). https://doi.org/10.1016/0149-1970(86)90027-2

    Article  Google Scholar 

  4. K. Azekura, New finite element solution technique for neutron diffusion equations. J. Nucl. Sci. Technol. 17(2), 89–97 (1980). https://doi.org/10.1080/18811248.1980.9732552

    Article  Google Scholar 

  5. C.Y. Zhang, G. Chen, Fast solution of neutron diffusion problem by reduced basis finite element method. Ann. Nucl. Energy 111, 702–708 (2018). https://doi.org/10.1016/j.anucene.2017.09.044

    Article  Google Scholar 

  6. S.A. Hosseini, N. Vosoughi, Neutron noise simulation by GFEM and unstructured triangle elements. Nucl. Eng. Des. 253, 238–258 (2012). https://doi.org/10.1016/j.nucengdes.2012.08.023

    Article  Google Scholar 

  7. S.A. Hosseini, F. Saadatian-Derakhshandeh, Galerkin and generalized least squares finite element: a comparative study for multi-group diffusion solvers. Prog. Nucl. Energy. 85, 473–490 (2015). https://doi.org/10.1016/j.pnucene.2015.07.009

    Article  Google Scholar 

  8. S.A. Hosseini, Development of galerkin finite element method three-dimensional computational code for the multigroup neutron diffusion equation with unstructured tetrahedron elements. Nucl. Eng. Technol. 48, 43–54 (2016). https://doi.org/10.1016/j.net.2015.10.009

    Article  Google Scholar 

  9. S.A. Hosseini, Sensitivity analysis of the Galerkin finite element method neutron diffusion solver to the shape of the elements. Nucl. Eng. Technol. 49, 29–42 (2017). https://doi.org/10.1016/j.net.2016.08.006

    Article  Google Scholar 

  10. A.V. Avvakumov, P.N. Vabishchevich, A.O. Vasilev et al., Solution of the neutronics code dynamic benchmark by finite element method. AIP Conf. Proc. 1773, 110003 (2016). https://doi.org/10.1063/1.4965007

    Article  Google Scholar 

  11. S. González-Pintor, D. Ginestar, G. Verdú, High order finite element method for the lambda modes problem on hexagonal geometry. Ann. Nucl. Energy 36, 1450–1462 (2009). https://doi.org/10.1016/j.anucene.2009.07.003

    Article  MATH  Google Scholar 

  12. M.K. Saadi, A. Abbaspour, Effective point kinetic parameters calculation in Tehran research reactor using deterministic and probabilistic methods. Nucl. Sci. Tech. 28, 171 (2017). https://doi.org/10.1007/s41365-017-0323-7

    Article  Google Scholar 

  13. M. Arkani, M. Hassanzadeh, S. Khakshournia, Calculation of six-group importance weighted delayed neutron fractions and prompt neutron lifetime of MTR research reactors based on Monte Carlo method. Prog. Nucl. Energ. 88, 352–363 (2016). https://doi.org/10.1016/j.pnucene.2015.12.005

    Article  Google Scholar 

  14. A. Lashkari, H. Khalafi, H. Kazeminejad, Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core. Ann. Nucl. Energy 55, 265–271 (2013). https://doi.org/10.1016/j.anucene.2012.12.001

    Article  Google Scholar 

  15. S.A. Hosseini, N. Vosoughi, M.B. Ghofrani et al., Calculation, measurement and sensitivity analysis of kinetic parameters of Tehran research reactor. Ann. Nucl. Energy 37, 463–470 (2010). https://doi.org/10.1016/j.anucene.2010.01.018

    Article  Google Scholar 

  16. M. Zaker, Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor. Ann. Nucl. Energy 30, 1591–1596 (2003). https://doi.org/10.1016/S0306-4549(03)00081-1

    Article  Google Scholar 

  17. B.X Yuan, H. Zeng, W.K Yang et al, Advances in FEMN: the code for nuclear noise analysis based on ICEM-CFD, in Proc. ASME. ICONE26, vol.3: Nuclear Fuel and Material, Reactor Physics, and Transport Theory, V003T02A006, July 22–26, 2018. https://doi.org/10.1115/icone26-81169

  18. K.P. Wang, H.C. Wu, L.Z. Cao, The application of the analytic basis function expansion triangular-z nodal method for neutron diffusion calculation. China. Sciencepap. 10(23), 2774–2778 (2015). https://doi.org/10.3969/j.issn.2095-2783.2015.23.017

    Article  Google Scholar 

  19. A. Hotta, H. Ninokata, A.J. Baratta, Development of parallel coupling system between three-dimensional nodal kinetic code ENTREE and two-fluid plant simulator TRAC/BF1. J. Nucl. Sci. Technol. 37(10), 840–854 (2000). https://doi.org/10.1080/18811248.2000.9714965

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Xin Yuan.

Additional information

This work was supported by the National Key R&D Plan Project (No. 2019YFB1901200) and Fundamental Project of NPL, CAEP (No. 232).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, BX., Yang, WK., Zhang, SB. et al. Calculation of effective point reactor kinetic parameters combined with the Galerkin finite element method. NUCL SCI TECH 31, 69 (2020). https://doi.org/10.1007/s41365-020-00781-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00781-y

Keywords

Navigation