Skip to main content
Log in

Study on cosmogenic radioactive production in germanium as a background for future rare event search experiments

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Rare event search experiments are one of the most important topics in the field of fundamental physics, and high-purity germanium (HPGe) detectors with an ultra-low radioactive background are frequently used for such experiments. However, cosmogenic activation contaminates germanium crystals during transport and storage. In this study, we investigated the movable shielding containers of HPGe crystals using Geant4 and CRY Monte Carlo simulations. The production rates of 68Ge, 65Zn, 60Co, 55Fe, and 3H were obtained individually for different types of cosmic rays. The validity of the simulation was confirmed through a comparison with the available experimental data. Based on this simulation, we found that the interactions induced by neutrons contribute to approximately 90% of the production rate of cosmogenic activation. In addition, by adding an optimized shielding structure, the production rates of cosmogenic radionuclides are reduced by about one order of magnitude. Our results show that it is feasible to use a shielding container to reduce the cosmogenic radioactivity produced during the transport and storage of high-purity germanium on the ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.M. Bilenky, Neutrinoless double beta-decay. Phys. Part. Nucl. 41, 690–715 (2010). https://doi.org/10.1134/S1063779610050035

    Article  Google Scholar 

  2. K. Zuber, Neutrinoless double beta decay experiments. Acta Physica Polonica. 37, 1905–1921 (2006). https://doi.org/10.1088/1748-0221/1/07/P07002

    Article  Google Scholar 

  3. D.O. Stefano, M. Simone, V. Matteo et al., Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 2162659 (2016). https://doi.org/10.1155/2016/2162659

    Article  Google Scholar 

  4. G. Bertone, The moment of truth for WIMP dark matter. Nature 468, 389–393 (2010). https://doi.org/10.1038/nature09509

    Article  Google Scholar 

  5. J.D. Lewin, P.F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astropart. Phys. 6, 87–112 (1996). https://doi.org/10.1016/S0927-6505(96)00047-3

    Article  Google Scholar 

  6. J. Schechter, J. Valle, Neutrinoless double- decay in SU(2)×U(1) theories. Phys. Rev. D. 25, 2951–2954 (1982). https://doi.org/10.1103/PhysRevD.25.2951

    Article  Google Scholar 

  7. D.M. Mei, Z.B. Yin, S.R. Elliott, Cosmogenic production as a background in searching for rare physics processes. Astropart. Phys. 31, 417–420 (2009). https://doi.org/10.1016/j.astropartphys.2009.04.004

    Article  Google Scholar 

  8. K. Kang, J. Cheng, J. Li et al., Introduction to the CDEX experiment. Front. Phys.-Beijing. 8, 412–437 (2013). https://doi.org/10.1007/s11467-013-0349-1

    Article  Google Scholar 

  9. L. Hehn, E. Armengaud, Q. Arnaud et al., Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach. Eur. Phys. J. C. 76, 548 (2016). https://doi.org/10.1140/epjc/s10052-016-4388-y

    Article  Google Scholar 

  10. R. Agnese, A.J. Anderson, T. Aralis et al., Low-mass dark matter search with CDMSlite. PHYS REV D. 97, 022002 (2018). https://doi.org/10.1103/PhysRevD.97.022002

    Article  Google Scholar 

  11. L. Wang, Q. Yue, K. Kang et al., First results on Ge-76 neutrinoless double beta decay from CDEX-1 experiment. Sci. China Phys. Mech. 60, 071011 (2017). https://doi.org/10.1007/s11433-017-9038-4

    Article  Google Scholar 

  12. R.W. Schnee, D.S. Akerib, M.J. Attisha, et al., The SuperCDMS experiment. In: Klapdor-Kleingrothaus H.V., Arnowitt R. (eds) Dark Matter in Astro- and Particle Physics. Springer, Berlin, pp. 259–268. https://doi.org/10.1007/3-540-26373-X_20

  13. L. Pandola, C. Tomei, GERDA, a GERmanium Detector Array for the search for neutrinoless betabeta decay in 76Ge. AIP Conf. Proc. 842, 843 (2006). https://doi.org/10.1063/1.2220398

    Article  Google Scholar 

  14. N. Abgrall, E. Aguayo, F.T.I. Avignone et al., The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment. Adv. High Energy Phys. (2014). https://doi.org/10.1155/2014/365432

    Article  Google Scholar 

  15. H. Jiang, L.P. Jia, Q. Yue et al., Limits on light weakly interacting massive particles from the first 102.8 kg × day data of the CDEX-10 experiment. Phys. Rev. Lett. 120, 241301 (2018). https://doi.org/10.1103/PhysRevLett.120.241301

    Article  Google Scholar 

  16. E. Aguayo Navarrete, R.T. Kouzes, A.S. Ankney, et al., Cosmic ray interactions in shielding materials. In: Pacific Northwest National Laboratory Report (2011). https://doi.org/10.2172/1025678

  17. I. Barabanov, S. Belogurov, L. Bezrukov et al., Cosmogenic activation of germanium and its reduction for low background experiments. Nucl. Instrum. Meth. B. 251, 115–120 (2006). https://doi.org/10.1016/j.nimb.2006.05.011

    Article  Google Scholar 

  18. G. Cocconi, V.C. Tongiorgi, Intensity and Lateral Distribution of the N-Component in the Extensive Showers of the Cosmic Radiation. Phys. Rev. 79, 730–732 (1950). https://doi.org/10.1103/PhysRev.79.730

    Article  Google Scholar 

  19. J.F. Ziegler, G.R. Srinivasan, Terrestrial cosmic rays and soft errors. IBM J. Res. Dev. 40, 19–39 (1996). https://doi.org/10.1147/rd.401.0019

    Article  Google Scholar 

  20. J. Tinlot, B. Gregory, Absorption of Penetrating Shower Primaries. Phys. Rev. 75, 519–520 (1949). https://doi.org/10.1103/physrev.75.519

    Article  Google Scholar 

  21. N.Q. Hung, V.H. Hai, M. Nomachi, Investigation of cosmic-ray induced background of Germanium gamma spectrometer using GEANT4 simulation. Appl. Radiat. Isotopes. 121, 87–90 (2017). https://doi.org/10.1016/j.apradiso.2016.12.047

    Article  Google Scholar 

  22. P. Papini, C. Grimani, S.A. Stephens, An estimate of the secondary-proton spectrum at small atmospheric depths. IL Nuovo Cimento C. 19, 367–387 (1996). https://doi.org/10.1007/BF02509295

    Article  Google Scholar 

  23. J. Ma, Q. Yue, S. Lin et al., Study on cosmogenic activation in germanium detectors for future tonne-scale CDEX experiment. Sci. China Phys. Mech. 62, 11011 (2019). https://doi.org/10.1007/s11433-018-9215-0

    Article  Google Scholar 

  24. W.Z. Wei, D.M. Mei, C. Zhang, Cosmogenic activation of germanium used for tonne-scale rare event search experiments. Astropart. Phys. 96, 24–31 (2017). https://doi.org/10.1016/j.astropartphys.2017.10.007

    Article  Google Scholar 

  25. S. Cebrián, J. Amaré, B. Beltrán et al., Cosmogenic activation in germanium double beta decay experiments. J. Phys. Conf. 39, 344–346 (2006). https://doi.org/10.1088/1742-6596/39/1/089

    Article  Google Scholar 

  26. J.J. Back, Y.A. Ramachers, ACTIVIA: Calculation of isotope production cross-sections and yields. Nucl. Instrum. Meth. A. 586, 286–294 (2008). https://doi.org/10.1016/j.nima.2007.12.008

    Article  Google Scholar 

  27. E. Armengaud, Q. Arnaud, C. Augier et al., Performance of the EDELWEISS-III experiment for direct dark matter searches. J. Instrum. (2017). https://doi.org/10.1088/1748-0221/12/08/P08010

    Article  Google Scholar 

  28. H.V. Klapdor-Kleingrothaus, L. Baudis, A. Dietz et al., GENIUS-TF: a test facility for the GENIUS project. Nucl. Instrum. Meth. A. 481, 149–159 (2002). https://doi.org/10.1016/s0168-9002(01)01258-x

    Article  Google Scholar 

  29. F.T. Avignone, R.L. Brodzinski, J.I. Collar et al., Theoretical and experimental investigation of cosmogenic radioisotope production in germanium. Nucl. Phys. B. 28, 280–285 (1992). https://doi.org/10.1016/0920-5632(92)90184-T

    Article  Google Scholar 

  30. W.N. Hess, H.W. Patterson, R. Wallace et al., Cosmic-ray neutron energy spectrum. Phys Rev. 116, 445–457 (1959). https://doi.org/10.1103/PhysRev.116.445

    Article  Google Scholar 

  31. E. Armengaud, Q. Arnaud, C. Augier et al., Measurement of the cosmogenic activation of germanium detectors in EDELWEISS-III. Dark Matter Astro Particle Phys. 91, 51–64 (2017). https://doi.org/10.1016/j.astropartphys.2017.03.006

    Article  Google Scholar 

  32. R. Agnese, T. Aralis, T. Aramaki et al., Production rate measurement of Tritium and other cosmogenic isotopes in Germanium with CDMSlite. Astropart. Phys. 104, 1–12 (2019). https://doi.org/10.1016/j.astropartphys.2018.08.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Yang Xing or Shu-Kui Liu.

Additional information

This work was supported by the National Key Research and Development Program of China (No. 2017YFA0402203), the National Natural Science Foundation of China (No. 11975162), and the Fundamental Research Funds for Central Universities (No. 20822041C4030).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, YL., Zhong, WX., Lin, ST. et al. Study on cosmogenic radioactive production in germanium as a background for future rare event search experiments. NUCL SCI TECH 31, 55 (2020). https://doi.org/10.1007/s41365-020-00762-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00762-1

Keywords

Navigation