Skip to main content
Log in

Quantifying lateral penumbra advantages of collimated spot-scanning beam for intensity-modulated proton therapy

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Intensity-modulated proton therapy (IMPT) is becoming essential for proton therapy and is under rapid development. However, for IMPT, the lateral penumbra of the spot-scanning proton beam is still an urgent issue to be solved. Patient-specific block collimators (PSBCs), which can block unnecessary doses, play a crucial role in passive scattering delivery technology but are rarely used in spot scanning. One objective of this study is to investigate the lateral penumbra variations of intensity-modulated spot scanning with and without a PSBC. For fields with varying degrees of sharpness and at varying depths in a water phantom, the lateral penumbral widths were calculated using a Monte Carlo-based dose engine from RayStation 6. The results suggest that the lateral penumbral widths can be reduced by more than 30% for uniform target volumes, regardless of whether a range-shifter is used, and that the maximum dose beyond the field edges can be reduced significantly. The results of patient cases show that the doses in organs-at-risk near the edge of the target volume decrease if a PSBC is implemented. This study demonstrates that intensity-modulated spot scanning with a PSBC can effectively reduce the lateral penumbra and block unnecessary doses and is therefore promising for clinical applications in spot-scanning proton therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.W. Wu, C.J. Tung, C.C. Lee et al., Impact of the material composition on proton range variation—a Monte Carlo study. Radiat. Phys. Chem. 116, 199–202 (2015). https://doi.org/10.1016/j.radphyschem.2015.01.017

    Article  Google Scholar 

  2. B. Clasie, N. Depauw, M. Fransen et al., Golden beam data for proton pencil-beam scanning. Phys. Med. Biol. 57, 1147–1158 (2012). https://doi.org/10.1088/0031-9155/57/5/1147

    Article  Google Scholar 

  3. H. Paganetti, Proton Therapy Physics (CRC Press, Boca Raton, 2012), p. 61

    Google Scholar 

  4. A. Mirandola, S. Molinelli, F.G. Vilches et al., Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy. Med. Phys. 42, 5287–5300 (2015). https://doi.org/10.1118/1.4928397

    Article  Google Scholar 

  5. H. Li, L. Zhang, L. Dong et al., A CT-based software tool for evaluating compensator quality in passively scattered proton therapy. Phys. Med. Biol. 55, 6759–6771 (2010). https://doi.org/10.1088/0031-9155/55/22/010

    Article  Google Scholar 

  6. J.R. Mendez, J. Perl, J. Schumann et al., Improved efficiency in Monte Carlo simulation for passive-scattering proton therapy. Phys. Med. Biol. 60, 5019–5035 (2015). https://doi.org/10.1088/0031-9155/60/13/5019

    Article  Google Scholar 

  7. Y. Zheng, J. Fontenot, P. Taddei et al., Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit. Phys. Med. Biol. 53, 187–201 (2008). https://doi.org/10.1088/0031-9155/53/1/013

    Article  Google Scholar 

  8. J.C. Polf, W.D. Newhauser, Calculations of neutron dose equivalent exposures from range-modulated proton therapy beams. Phys. Med. Biol. 50, 3859–3873 (2005). https://doi.org/10.1088/0031-9155/50/16/014

    Article  Google Scholar 

  9. J.C. Polf, W.D. Newhauser, U. Titt, Patient neutron dose equivalent exposures outside of the proton therapy treatment field. Radiat. Prot. Dosim. 115, 154–158 (2005). https://doi.org/10.1093/rpd/nci264

    Article  Google Scholar 

  10. D.E. Hyer, P.M. Hill, D. Wang et al., A dynamic collimation system for penumbra reduction in spot-scanning proton therapy: proof of concept. Med. Phys. 41, 91701 (2014). https://doi.org/10.1118/1.4837155

    Article  Google Scholar 

  11. M. Prusator, S. Ahmad, Y. Chen, TOPAS Simulation of the Mevion S250 compact proton therapy unit. J. Appl. Clin. Med. Phys. 18, 88–95 (2017). https://doi.org/10.1002/acm2.12077

    Article  Google Scholar 

  12. S. Safai, T. Bortfeld, M. Engelsman, Comparison between the lateral penumbra of a collimated double-scattered beam and uncollimated scanning beam in proton radiotherapy. Phys. Med. Biol. 53, 1729–1750 (2008). https://doi.org/10.1088/0031-9155/53/6/016

    Article  Google Scholar 

  13. C. Winterhalter, A. Lomax, D. Oxley et al., A study of lateral fall-off (penumbra) optimisation for pencil beam scanning (PBS) proton therapy. Phys. Med. Biol. 63, 25022 (2018). https://doi.org/10.1088/1361-6560/aaa2ad

    Article  Google Scholar 

  14. G. Karamysheva, S. Gurskiy, O. Karamyshev, et al., Compact superconduction cyclotron SC200 for proton therapy. in Proceedings of the 21st international conference on cyclotrons and their applications (CYC’16). 2016. pp. 208–211

  15. K. Yasui, T. Toshito, C. Omachi et al., Evaluation of dosimetric advantages of using patient-specific aperture system with intensity-modulated proton therapy for the shallow depth tumor. J. Appl. Clin. Med. Phys. 19, 132–137 (2018). https://doi.org/10.1002/acm2.12231

    Article  Google Scholar 

  16. C. Bäumer, M. Janson, B. Timmermann, J. Wulff, Collimated proton pencil-beam scanning for superficial targets: impact of the order of range shifter and aperture. Phys. Med. Biol. 63, 85020 (2018). https://doi.org/10.1088/1361-6560/aab79c

    Article  Google Scholar 

  17. U.W. Langner, J.G. Eley, L. Dong et al., Comparison of multi-institutional Varian ProBeam pencil beam scanning proton beam commissioning data. J. Appl. Clin. Med. Phys. 18, 96–107 (2017). https://doi.org/10.1002/acm2.12078

    Article  Google Scholar 

  18. J. Shirey, H.T. Wu, Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy. J. Appl. Clin. Med. Phys. 19, 164–173 (2018). https://doi.org/10.1002/acm2.12241

    Article  Google Scholar 

  19. M.J. Berger, J.S. Coursey, M.A. Zucker et al., Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions. NIST Standard Reference Database 124 (2017). https://dx.doi.org/10.18434/T4NC7P

  20. RaySearch Laboratories, RayStation 6 Reference Manual (Stockholm, RaySearch, 2016), pp. 155–158

    Google Scholar 

  21. J. Saini, D. Maes, A. Egan, S.R. Bowen, S. St James, M. Janson et al., Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations. Phys. Med. Biol. 62, 7659–7681 (2017). https://doi.org/10.1088/1361-6560/aa82a5

    Article  Google Scholar 

  22. F.C. Charlwood, A.H. Aitkenhead, R.I. Mackay, A Monte Carlo study on the collimation of pencil beam scanning proton therapy beams. Med. Phys. 43, 1462–1472 (2016). https://doi.org/10.1118/1.4941957

    Article  Google Scholar 

  23. B.R. Smith, D.E. Hyer, P.M. Hill, W.S. Culberson, Secondary neutron dose from a dynamic collimation system during intracranial pencil beam scanning proton therapy: a Monte Carlo investigation. Int. J. Radiat. Oncol. Biol. Phys. 103, 241–250 (2019). https://doi.org/10.1016/j.ijrobp.2018.08.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Sheng Feng.

Additional information

This work was supported by the Key Program of the 13th Five-Year Plan, the Hefei Institutes of Physical Science of the Chinese Academy of Sciences (No. KP-2017-24).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CB., Song, YT., Liu, HD. et al. Quantifying lateral penumbra advantages of collimated spot-scanning beam for intensity-modulated proton therapy. NUCL SCI TECH 30, 168 (2019). https://doi.org/10.1007/s41365-019-0687-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0687-y

Keywords

Navigation