Skip to main content

Advertisement

Log in

Simulation of hydrogen distribution and effect of Engineering Safety Features (ESFs) on its mitigation in a WWER-1000 containment

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, thermal–hydraulic parameters inside the containment of a WWER-1000/v446 nuclear power plant are simulated in a double-ended cold leg accident for short and long times (by using CONTAIN 2.0 and MELCOR 1.8.6 codes), and the effect of the spray system as an engineering safety feature on parameters mitigation is analyzed with the former code. Along with the development of the accident from design basis accident to beyond design basis accident, the Zircaloy–steam reaction becomes the source of in-vessel hydrogen generation. Hydrogen distribution inside the containment is simulated for a long time (using CONTAIN and MELCOR), and the effect of recombiners on its mitigation is analyzed (using MELCOR). Thermal–hydraulic parameters and hydrogen distribution profiles are presented as the outcome of the investigation. By activating the spray system, the peak points of pressure and temperature occur in the short time and remain below the maximum design values along the accident time. It is also shown that recombiners have a reliable effect on reducing the hydrogen concentration below flame propagation limit in the accident localization area. The parameters predicted by CONTAIN and MELCOR are in good agreement with the final safety analysis report. The noted discrepancies are discussed and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J.N. Sorensen, G.E. Apostolakis, T.S. Kress et al., On the role of defence in depth in risk-informed regulation. Washington, D.C, (1999)

  2. O. Noori-Kalkhoran, M. Rahgoshay, A. Minuchehr et al., Analysis of thermal-hydraulic parameters of WWER-1000 containment in a large break LOCA. Ann. Nucl. Energy 68, 101–111 (2014). https://doi.org/10.1016/J.ANUCENE.2014.01.009

    Article  Google Scholar 

  3. IAEA, Mitigation of hydrogen hazards in severe accidents in nuclear power plants. Vienna (2011)

  4. NRC, U.S. nuclear regulatory commission regulations: title 10, Code of Federal Regulations

  5. O. Noori-Kalkhoran, A. Minuchehr, M. Rahgoshay et al., Short-term and long-term analysis of WWER-1000 containment parameters in a large break LOCA. Prog. Nucl. Energy 74, 201–212 (2014). https://doi.org/10.1016/J.PNUCENE.2014.03.007

    Article  Google Scholar 

  6. O. Noori-Kalkhoran, A.S. Shirani, R. Ahangari, Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code. Nucl. Eng. Technol. 48, 1140–1153 (2016). https://doi.org/10.1016/J.NET.2016.03.008

    Article  Google Scholar 

  7. D. Papini, D. Grgić, A. Cammi et al., Analysis of different containment models for IRIS small break LOCA, using GOTHIC and RELAP5 codes. Nucl. Eng. Des. 241, 1152–1164 (2011). https://doi.org/10.1016/j.nucengdes.2010.06.016

    Article  Google Scholar 

  8. Y.S. Chen, Y.R. Yuann, L.C. Dai, Lungmen ABWR containment analyses during short-term main steam line break LOCA using GOTHIC. Nucl. Eng. Des. 247, 106–115 (2012). https://doi.org/10.1016/j.nucengdes.2012.02.012

    Article  Google Scholar 

  9. G. Jimenez, C. Serrano, E. Lopez-Alonso, BWR Mark III containment analyses using a GOTHIC 8.0 3D model. Ann. Nucl. Energy 85, 687–703 (2015). https://doi.org/10.1016/j.anucene.2015.06.025

    Article  Google Scholar 

  10. Z. Huang, W. Ma, Performance evaluation of passive containment cooling system of an advanced PWR using coupled RELAP5/GOTHIC simulation. Nucl. Eng. Des. 310, 83–92 (2016). https://doi.org/10.1016/j.nucengdes.2016.10.004

    Article  Google Scholar 

  11. EPRI, GOTHIC Thermal hydraulic analysis package installation and operations manual (2016)

  12. M. Povilaitis, S. Kelm, E. Urbonavičius, The generic containment SB-LOCA accident simulation: comparison of the parameter uncertainties and user-effect. Ann. Nucl. Energy 106, 1–10 (2017). https://doi.org/10.1016/j.anucene.2017.03.037

    Article  Google Scholar 

  13. B. De Boeck, Prevention and mitigation measures to ensure containment integrity. Nucl. Eng. Des. 209, 147–154 (2001). https://doi.org/10.1016/S0029-5493(01)00397-1

    Article  Google Scholar 

  14. S. Yu, M. Yan, J. Wang et al., Numerical investigations on the response of the passive containment cooling system and containment under a DELB LOCA scenario. Prog. Nucl. Energy 97, 26–37 (2017). https://doi.org/10.1016/j.pnucene.2016.12.011

    Article  Google Scholar 

  15. X.G. Huang, Y.H. Yang, X. Cheng et al., Effect of spray on performance of the hydrogen mitigation system during LB-LOCA for CPR1000 NPP. Ann. Nucl. Energy 38, 1743–1750 (2011). https://doi.org/10.1016/j.anucene.2011.04.003

    Article  Google Scholar 

  16. B.G. Jeon, H.C. No, Thermal-hydraulic evaluation of passive containment cooling system of improved APR + during LOCAs. Nucl. Eng. Des. 278, 190–198 (2014). https://doi.org/10.1016/j.nucengdes.2014.07.038

    Article  Google Scholar 

  17. S. Şahin, M.S. Sarwar, Hydrogen hazard and mitigation analysis in PWR containment. Ann. Nucl. Energy 58, 132–140 (2013). https://doi.org/10.1016/j.anucene.2013.03.001

    Article  Google Scholar 

  18. S.R. Ravva, K.N. Iyer, A.J. Gaikwad, Development of sump model for containment hydrogen distribution calculations using CFD code. Nucl. Eng. Des. 295, 429–440 (2015). https://doi.org/10.1016/j.nucengdes.2015.10.00

    Article  Google Scholar 

  19. J.M. Martín-Valdepeñas, M.A. Jiménez, F. Martín-Fuertes et al., Improvements in a CFD code for analysis of hydrogen behaviour within containments. Nucl. Eng. Des. 237, 627–647 (2007). https://doi.org/10.1016/j.nucengdes.2006.09.002

    Article  Google Scholar 

  20. A.M. Gómez-Torres, E. Sáinz-Mejía, J.V. Xolocostli-Munguía et al., CFD analysis of hydrogen volumetric concentrations in a hard venting containment system of a mark II BWR. Ann. Nucl. Energy 85, 552–565 (2015). https://doi.org/10.1016/j.anucene.2015.06.008

    Article  Google Scholar 

  21. G.P. Choi, D.Y. Kim, K.H. Yoo et al., Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks. Nucl. Eng. Des. 300, 393–402 (2016). https://doi.org/10.1016/j.nucengdes.2016.02.015

    Article  Google Scholar 

  22. T. Szabó, F. Kretzschmar, T. Schulenberg, Obtaining a more realistic hydrogen distribution in the containment by coupling MELCOR with GASFLOW. Nucl. Eng. Des. 269, 330–339 (2014). https://doi.org/10.1016/j.nucengdes.2013.07.009

    Article  Google Scholar 

  23. W. Breitung, P. Royl, Procedure and tools for deterministic analysis and control of hydrogen behavior in severe accidents. Nucl. Eng. Des. 202, 249–268 (2000). https://doi.org/10.1016/S0029-5493(00)00380-0

    Article  Google Scholar 

  24. E. Bachellerie, F. Arnould, M. Auglaire et al., Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments. Nucl. Eng. Des. 221, 151–165 (2003). https://doi.org/10.1016/S0029-5493(02)00330-8

    Article  Google Scholar 

  25. AEOI (Atomic Energy Organization of Iran), BNPP final safety analysis report (FSAR). Iran (2007)

  26. Drell IL, Belles FE (1958) Survey of hydrogen combustion properties. United States: NASA Technical report

  27. H. Karwat, J. Bardelay, T. Hashimoto, SOAR on containment thermalhydraulics and hydrogen distribution. OECD/NEA/CSNI (1999)

  28. K.K. Murata, D.C. William, J. Tills et al., Code manual for CONTAIN 2.0; A computer code for nuclear reactor containment analysis. Albuquerqu, NM: Sandia National Lab (1997)

  29. R.O. Gauntt, R.K. Cole, C.M. Erickson et al., MELCOR Computer Code Manuals. NUREG/CR-6119, Rev. 2 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Noori-kalkhoran.

Additional information

Part of this research has been developed under the auspices of EU H2020 Union’s Horizon 2020 research and innovation programme Marie Skłodowska-Curie Actions COFUND Grant SIRCIW, Agreement No. 663830.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori-kalkhoran, O., Jafari-ouregani, N., Gei, M. et al. Simulation of hydrogen distribution and effect of Engineering Safety Features (ESFs) on its mitigation in a WWER-1000 containment. NUCL SCI TECH 30, 97 (2019). https://doi.org/10.1007/s41365-019-0624-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0624-0

Keywords

Navigation