Skip to main content
Log in

An APXPS endstation for gas–solid and liquid–solid interface studies at SSRF

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In the past few decades, various surface analysis techniques find wide applications in studies of interfacial phenomena ranging from fundamental surface science, catalysis, environmental science and energy materials. With the help of bright synchrotron sources, many of these techniques have been further advanced into novel in-situ/operando tools at synchrotron user facilities, providing molecular level understanding of chemical/electrochemical processes in-situ at gas–solid and liquid–solid interfaces. Designing a proper endstation for a dedicated beamline is one of the challenges in utilizing these techniques efficiently for a variety of user’s requests. Many factors, including pressure differential, geometry and energy of the photon source, sample and analyzer, need to be optimized for the system of interest. In this paper, we discuss the design and performance of a new endstation at beamline 02B at the Shanghai Synchrotron Radiation Facility for ambient pressure X-ray photoelectron spectroscopy studies. This system, equipped with the newly developed high-transmission HiPP-3 analyzer, is demonstrated to be capable of efficiently collecting photoelectrons up to 1500 eV from ultrahigh vacuum to ambient pressure of 20 mbar. The spectromicroscopy mode of HiPP-3 analyzer also enables detection of photoelectron spatial distribution with resolution of 2.8 ± 0.3 µm in one dimension. In addition, the designing strategies of systems that allow investigations in phenomena at gas–solid interface and liquid–solid interface will be highlighted through our discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis (Wiley, Hoboken, 2010)

    Google Scholar 

  2. S. Hüfner, Photoelectron spectroscopy: principles and applications (Springer, Berlin, 2013)

    Google Scholar 

  3. M. Salmeron, R. Schlögl, Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63(4), 169–199 (2008). https://doi.org/10.1016/j.surfrep.2008.01.001

    Article  Google Scholar 

  4. D. Starr, Z. Liu, M. Hävecker et al., Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem. Soc. Rev. 42(13), 5833–5857 (2013). https://doi.org/10.1039/C3CS60057B

    Article  Google Scholar 

  5. H.-J. Freund, H. Kuhlenbeck, J. Libuda et al., Bridging the pressure and materials gaps between catalysis and surface science: clean and modified oxide surfaces. Top. Catal. 15(2–4), 201–209 (2001). https://doi.org/10.1023/A:1016686322301

    Article  Google Scholar 

  6. P. Stoltze, J. Nørskov, Bridging the “Pressure Gap” between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys. Rev. Lett. 55(22), 2502–2505 (1985). https://doi.org/10.1103/PhysRevLett.55.2502

    Article  Google Scholar 

  7. K. Siegbahn, C. Nordling, G. Johansson et al., ESCA Applied to Free Molecules (North-Holland Publishing Co., Amsterdam, 1969)

    Google Scholar 

  8. R.W. Joyner, M.W. Roberts, K. Yates, A “high-pressure” electron spectrometer for surface studies. Surf. Sci. 87(2), 501–509 (1979). https://doi.org/10.1016/0039-6028(79)90544-2

    Article  Google Scholar 

  9. H. Siegbahn, S. Svensson, M. Lundholm, A new method for ESCA studies of liquid-phase samples. J. Electron Spectrosc. Relat. Phenom. 24(2), 205–213 (1981). https://doi.org/10.1016/0368-2048(81)80007-2

    Article  Google Scholar 

  10. H. Ruppender, M. Grunze, C. Kong et al., In situ X-ray photoelectron spectroscopy of surfaces at pressures up to 1 mbar. Surf. Interface Anal. 15(4), 245–253 (1990). https://doi.org/10.1002/sia.740150403

    Article  Google Scholar 

  11. D.F. Ogletree, H. Bluhm, G. Lebedev et al., A differentially pumped electrostatic lens system for photoemission studies in the millibar range. Rev. Sci. Instrum. 73(11), 3872–3877 (2002). https://doi.org/10.1063/1.1512336

    Article  Google Scholar 

  12. D.F. Ogletree, H. Bluhm, E.D. Hebenstreit et al., Photoelectron spectroscopy under ambient pressure and temperature conditions. Nucl. Instrum. Methods A 601(1), 151–160 (2009). https://doi.org/10.1016/j.nima.2008.12.155

    Article  Google Scholar 

  13. H. Bluhm, M. Hävecker, A. Knop-Gericke et al., Methanol oxidation on a copper catalyst investigated using in situ X-ray photoelectron spectroscopy. J. Phys. Chem. B 108(38), 14340–14347 (2004). https://doi.org/10.1021/jp040080j

    Article  Google Scholar 

  14. M.E. Grass, P.G. Karlsson, F. Aksoy et al., New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. Rev. Sci. Instrum. 81(5), 053106 (2010). https://doi.org/10.1063/1.3427218

    Article  Google Scholar 

  15. J. Schnadt, J. Knudsen, J.N. Andersen et al., The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab. J. Synchrotron. Radiat. 19(5), 701–704 (2012). https://doi.org/10.1107/S0909049512032700

    Article  Google Scholar 

  16. R. Toyoshima, M. Yoshida, Y. Monya et al., In situ ambient pressure XPS study of CO oxidation reaction on Pd(111) surfaces. J. Phys. Chem. C 116(35), 18691–18697 (2012). https://doi.org/10.1021/jp301636u

    Article  Google Scholar 

  17. S. Kaya, H. Ogasawara, L.-Å. Näslund et al., Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catal. Today 205, 101–105 (2013). https://doi.org/10.1016/j.cattod.2012.08.005

    Article  Google Scholar 

  18. C. Zhang, M.E. Grass, A.H. McDaniel et al., Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nat. Mater. 9(11), 944–949 (2010). https://doi.org/10.1038/nmat2851

    Article  Google Scholar 

  19. F. Tao, M.E. Grass, Y. Zhang et al., Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322(5903), 932–934 (2008). https://doi.org/10.1126/science.1164170

    Article  Google Scholar 

  20. G.A. Somorjai, H. Frei, J.Y. Park, Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 131(46), 16589–16605 (2009). https://doi.org/10.1021/ja9061954

    Article  Google Scholar 

  21. M. Favaro, B. Jeong, P.N. Ross et al., Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016). https://doi.org/10.1038/ncomms12695

    Article  Google Scholar 

  22. N.J. Divins, A. Inma, E. Carlos et al., Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 346(6209), 620–623 (2014). https://doi.org/10.1126/science.1258106

    Article  Google Scholar 

  23. S. Axnanda, E.J. Crumlin, B. Mao et al., Using “Tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 5, 9788 (2015). https://doi.org/10.1038/srep09788

    Article  Google Scholar 

  24. S.K. Eriksson, M. Hahlin, J.M. Kahk et al., A versatile photoelectron spectrometer for pressures up to 30 mbar. Rev. Sci. Instrum. 85(7), 075119 (2014). https://doi.org/10.1063/1.4890665

    Article  Google Scholar 

  25. D. Teschner, A. Pestryakov, E. Kleimenov et al., High-pressure X-ray photoelectron spectroscopy of palladium model hydrogenation catalysts: part 1: effect of gas ambient and temperature. J. Catal. 230(1), 186–194 (2005). https://doi.org/10.1016/j.jcat.2004.11.036

    Article  Google Scholar 

  26. S. Nemšák, E. Strelcov, H. Guo et al., In aqua electrochemistry probed by XPEEM: Experimental setup, examples, and challenges. Top. Catal. 61(20), 2195–2206 (2018). https://doi.org/10.1007/s11244-018-1065-4

    Article  Google Scholar 

  27. N. Mårtensson, P. Baltzer, P.A. Brühwiler et al., A very high resolution electron spectrometer. J. Electron Spectrosc. Relat. Phenom. 70(2), 117–128 (1994). https://doi.org/10.1016/0368-2048(94)02224-N

    Article  Google Scholar 

  28. F. Tao, S. Dag, L.-W. Wang et al., Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327(5967), 850–853 (2010). https://doi.org/10.1126/science.1182122

    Article  Google Scholar 

  29. P. Gao, S. Li, X. Bu et al., Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9(1), 1019–1024 (2017). https://doi.org/10.1038/nchem.2794

    Article  Google Scholar 

  30. C. Zhang, M.E. Grass, Y. Yu et al., Multielement activity mapping and potential mapping in solid oxide electrochemical cells through the use of operando XPS. ACS Catal. 2(11), 2297–2304 (2012). https://doi.org/10.1021/cs3004243

    Article  Google Scholar 

  31. C. Zhang, Y. Yu, M.E. Grass et al., Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells. J. Am. Chem. Soc. 135(31), 11572–11579 (2013). https://doi.org/10.1021/ja402604u

    Article  Google Scholar 

  32. M.O.M. Edwards, P.G. Karlsson, S.K. Eriksson et al., Increased photoelectron transmission in High-pressure photoelectron spectrometers using “swift acceleration”. Nucl. Instrum. Methods A 785, 191–196 (2015). https://doi.org/10.1016/j.nima.2015.02.047

    Article  Google Scholar 

  33. Y. Han, S. Axnanda, E.J. Crumlin et al., Observing the electrochemical oxidation of Co metal at the solid/liquid interface using ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. B. (2017). https://doi.org/10.1021/acs.jpcb.7b05982

    Article  Google Scholar 

  34. M.F. Lichterman, S. Hu, M.H. Richter et al., Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ. Sci. 8(8), 2409–2416 (2015). https://doi.org/10.1039/C5EE01014D

    Article  Google Scholar 

  35. P. Baltzer, L. Karlsson, M. Lundqvist et al., Resolution and signal-to-background enhancement in gas-phase electron spectroscopy. Rev. Sci. Instrum. 64(8), 2179–2189 (1993). https://doi.org/10.1063/1.1143957

    Article  Google Scholar 

  36. J.L. Campbell, T. Papp, Widths of the atomic K-N7 levels. Atomic Data Nucl. Data Tables 77(1), 1–56 (2001). https://doi.org/10.1006/adnd.2000.0848

    Article  Google Scholar 

  37. H. Fellner-Feldegg, Ph.D. dissertation, Uppsala University, 1974

  38. S. Mähl, M. Neumann, S. Dieckhoff et al., Characterisation of the VG ESCALAB instrumental broadening functions by XPS measurements at the Fermi edge of silver. J. Electron Spectrosc. Relat. Phenom. 85(3), 197–203 (1997). https://doi.org/10.1016/S0368-2048(97)00074-1

    Article  Google Scholar 

  39. J.J. Olivero, R.L. Longbothum, Empirical fits to the Voigt line width: a brief review. J. Quant. Spectrosc. Radiat. Transf. 17(2), 233–236 (1977). https://doi.org/10.1016/0022-4073(77)90161-3

    Article  Google Scholar 

  40. Y. Ning, Q. Fu, Y. Li et al., A near ambient pressure photoemission electron microscope (NAP-PEEM). Ultramicroscopy 200, 105–110 (2019). https://doi.org/10.1016/j.ultramic.2019.02.028

    Article  Google Scholar 

  41. R. Follath, M. Hävecker, G. Reichardt, K. Lips, J. Bahrdt, F. Schäfers and P. Schmid, presented at the Journal of Physics: Conference Series, 2013 (unpublished)

  42. G. Materlik, T. Rayment, D.I. Stuart, Diamond light source: status and perspectives. Philos. Trans. A Math. Phys. Eng. Sci 373(2036), 20130161 (2015). https://doi.org/10.1098/rsta.2013.0161

    Article  Google Scholar 

  43. X. Liu, W. Yang, Z. Liu, Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials. Adv. Mater. 26(46), 7710–7729 (2014). https://doi.org/10.1002/adma.201304676

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Yu or Zhi Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11227902) as part of NSFC ME2 beamline project and Science and Technology Commission of Shanghai Municipality (No. 14520722100). Y.H., Y.Y., and B.M. are supported by National Natural Science Foundation of China (Nos. 21802096, 21832004, and 11805255).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Dong, Q., Han, Y. et al. An APXPS endstation for gas–solid and liquid–solid interface studies at SSRF. NUCL SCI TECH 30, 81 (2019). https://doi.org/10.1007/s41365-019-0608-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0608-0

Keywords

Navigation