Skip to main content

Advertisement

Log in

Development and validation of depletion code system IMPC-Burnup for ADS

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Depletion calculation is important for studying the transmutation efficiency of minor actinides and long-life fission products in accelerator-driven subcritical reactor system (ADS). Herein the Python language is used to develop a burnup code system called IMPC-Burnup by coupling FLUKA, OpenMC, and ORIGEN2. The program is preliminarily verified by OECD-NEA pin cell and IAEA-ADS benchmarking by comparison with experimental values and calculated results from other studies. Moreover, the physics design scheme of the CIADS subcritical core is utilized to test the feasibility of IMPC-Burnup program in the burnup calculation of ADS system. Reference results are given by the COUPLE3.0 program. The results of IMPC-Burnup show good agreement with those of COUPLE3.0. In addition, since the upper limit of the neutron transport energy for OpenMC is 20 MeV, neutrons with energies greater than 20 MeV in the CIADS subcritical core cannot be transported; thus, an equivalent flux method has been proposed to consider neutrons above 20 MeV in the OpenMC transport calculation. The results are compared to those that do not include neutrons greater than 20 MeV. The conclusion is that the accuracy of the actinide nuclide mass in the burnup calculation is improved when the equivalent flux method is used. Therefore, the IMPC-Burnup code is suitable for burnup analysis of the ADS system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Stanculescu, Accelerator driven systems (ADSs) for nuclear transmutation. Ann. Nucl. Energy 62, 607–612 (2013)

    Article  Google Scholar 

  2. W.R. Martin, Challenges and prospects for whole-core Monte Carlo analysis. Nucl. Eng. Technol. 44, 151–160 (2012). https://doi.org/10.5516/NET.01.2012.502

    Article  Google Scholar 

  3. R.L. Moore, B.G. Schnitzler, C.A. Wemple, et al., MOCUP:MCNP-ORIGEN2 coupled utility program. INEL-95/0523 (1995)

  4. G.L. Yu, K. Wang, Y.H. Wang, MCBurn—a coupling package of program MCNP and ORIGEN. Atom. Energy Sci. Technol. 37, 250–254 (2003). https://doi.org/10.3969/j.issn.1000-6931.2003.03.014. (in Chinese)

    Article  Google Scholar 

  5. A. Talamo, W. Ji, J. Centar et al., Comparison of MCB and MONTEBURNS Monte Carlo burnup codes on a one-pass deep burn. Ann. Nucl. Energy 33, 1176–1188 (2006). https://doi.org/10.1016/j.anucene.2006.08.006

    Article  Google Scholar 

  6. A. Stankovskiy, G.V.D. Eynde, P. Baeten. et al., ALEPH2—a general purpose Monte Carlo depletion code. Paper presented at PHYSOR 2012: Conference on Advances in Reactor Physics—Linking Research, Industry, and Education. Knoxville, Tennessee, USA, 15–20 April (2012)

  7. J. Leppänen, M. Pusa, T. Viitanen et al., The Serpent Monte Carlo code: status, development and applications in 2013. Ann. Nucl. Energy 82, 142–150 (2014). https://doi.org/10.1051/snamc/201406021

    Article  Google Scholar 

  8. K. Wang, Z. Li, D. She et al., RMC—a Monte Carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121–129 (2015). https://doi.org/10.1051/snamc/201406020

    Article  Google Scholar 

  9. G. Li, B. Zhang, L. Deng et al., Development of Monte Carlo particle transport code JMCT. High Power Laser Part. Beams 25, 158–162 (2013). https://doi.org/10.3788/HPLPB20132501.0158. (in Chinese)

    Article  Google Scholar 

  10. J.Y. Li, L. Gu, R. Yu et al., Development and validation of burnup-transport code system OMCB for accelerator driven system. Nucl. Eng. Des. 324, 360–371 (2017). https://doi.org/10.1016/j.nucengdes.2017.09.012

    Article  Google Scholar 

  11. X.Z. Li, H.C. Wu, Y.Q. Zheng et al., Development and application of high-energy nuclear data library for accelerator driven sub-critical system. Atom. Energy Sci. Technol. 49, 371–376 (2015). https://doi.org/10.7538/yzk.2015.49.S0.0371. (in Chinese)

    Article  Google Scholar 

  12. D. Pelowitz. MCNPX User’s Manual 2.7. 0. Los Alamos National Laboratory, Los Alamos, New Mexico (2011)

  13. H.Q. Li, Y.W. Yang, The Development of Burn-up Program COUPLE by Combining MCNP and ORIGEN, Conference of Chinese Reactor Physics, Qinshan, China, Augest 8–12 (2004)

  14. A.G. Croff, A User’s Manual for the ORIGEN2 Computer Code. ORNL/TM-7175 (1980)

  15. P.K. Romano, B. Forget, The OpenMC Monte Carlo particle transport code. Ann. Nucl. Energy 51, 274–281 (2013). https://doi.org/10.1016/j.anucene.2012.06.040

    Article  Google Scholar 

  16. A. Ferrari, P.R. Sala, A. Fasso et al., FLUKA: a multi-particle transport code. Lancet 10(7740), 44–45 (2005). https://doi.org/10.2172/877507

    Article  Google Scholar 

  17. S. Hong, Y.W. Yang, H.S. Xu et al., Application of Origen2.1 in the decay photon spectrum calculation of spallation products. Chin. Phys. C. 40, 82–87 (2016). https://doi.org/10.1088/1674-1137/40/11/114102

    Article  Google Scholar 

  18. P.K. Romano, N.E. Horelik, B.R. Herman et al., OpenMC: a state-of-the-art Monte Carlo code for research and development. Ann. Nucl. Energy 82, 90–97 (2014). https://doi.org/10.1016/j.anucene.2014.07.048

    Article  Google Scholar 

  19. A. Gul, K.S. Chaudri, R. Khan et al., Development and verification of LOOP: a linkage of ORIGEN2.2 and OpenMC. Ann. Nucl. Energy 99, 321–327 (2016). https://doi.org/10.1016/j.anucene.2016.09.016

    Article  Google Scholar 

  20. M.D. Dehart, M.C. Brady, C.V. Parks, OECD/NEA burnup credit calculational criticality benchmark Phase I-B results. ORNL-6901 (1996)

  21. I. Slessarev, A. Tchistiakov, IAEA ADS-benchmark results and analysis (TCM-Meeting, Madrid, Spain, Madrid, 1997)

    Google Scholar 

  22. X.F. Jiang, Z. Xie, Transport-burnup code systems and their applications for IAEA ADS benchmark. Ann. Nucl. Energy 31(2), 213–225 (2004). https://doi.org/10.1016/S0306-4549(03)00205-6

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge Mr. Hong Shuang for the technical support of FLUKA and OpenMC coupled calculation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze-Long Zhao or Yong-Wei Yang.

Additional information

This work was supported by the “Strategic Priority Research Program” of Chinese Academy of Sciences (No.XDA03030102).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZQ., Zhao, ZL., Yang, YW. et al. Development and validation of depletion code system IMPC-Burnup for ADS. NUCL SCI TECH 30, 44 (2019). https://doi.org/10.1007/s41365-019-0560-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0560-z

Keywords

Navigation