Skip to main content
Log in

Separation of hafnium from zirconium in hydrochloric acid solution with di(2-ethylhexyl)phosphoric acid by solvent extraction

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The preparation of nuclear-grade zirconium and hafnium is very important for nuclear power. The separation of hafnium from zirconium in a hydrochloric acid solution by solvent extraction was investigated with di(2-ethylhexyl)phosphoric acid (D2EHPA). The effects of hydrochloric acid concentration, extractant concentration, diluents, and temperature on the distribution coefficient of hafnium and zirconium were studied. The species extracted were ZrOA2·2HA and HfOA2·2HA. In this process, the separation factors varied with different diluents and followed the order octane > hexane > toluene > chloroform. A high separation factor value of 4.16 was obtained under the conditions of a solution containing 0.05 mol/L HCl and 0.01 mol/L D2EHPA for the separation of hafnium from zirconium. The extraction reaction was endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Xu, L. Wang, M. Wu, Y. Xu et al., Separation of zirconium and hafnium by solvent extraction using mixture of DIBK and P204. Hydrometallurgy 165, 275–281 (2016). https://doi.org/10.1016/j.hydromet.2016.01.032

    Article  Google Scholar 

  2. Z.-G. Xu, L. Wang, Y.-K. Wu et al., Solvent extraction of hafnium from thiocyanic acid medium in DIBK-TBP mixed system. Trans Nonferr. Met. Soc. 22, 1760–1765 (2012). https://doi.org/10.1016/S1003-6326(11)61384-8

    Article  Google Scholar 

  3. M. Smolik, A. Jakóbik-Kolon, M. Porański, Separation of zirconium and hafnium using Diphonix® chelating ion-exchange resin. Hydrometallurgy 95, 350–353 (2009). https://doi.org/10.1016/j.hydromet.2008.05.010

    Article  Google Scholar 

  4. L.Y. Wang, M.S. Lee, Development of a separation process for the selective extraction of hafnium(IV) over zirconium(IV) from sulfuric acid solutions by using D2EHPA. Hydrometallurgy 160, 12–17 (2016). https://doi.org/10.1016/j.hydromet.2015.11.013

    Article  Google Scholar 

  5. L.Y. Wang, M.S. Lee, A review on the aqueous chemistry of Zr(IV) and Hf(IV) and their separation by solvent extraction. J. Ind. Eng. Chem. 39, 1–9 (2016). https://doi.org/10.1016/j.jiec.2016.06.004

    Article  Google Scholar 

  6. B. Gupta, P. Malik, N. Mudhar, extraction and recovery of zirconium from zircon using Cyanex 923. Solv. Extr. Ion Exch. 23, 345–357 (2005). https://doi.org/10.1081/SEI-200050005

    Article  Google Scholar 

  7. L.Y. Wang, H.Y. Lee, M.S. Lee, Solvent extractive separation of zirconium and hafnium from hydrochloric acid solutions by organophosphorous extractants and their mixtures with other types of extractants. Chem. Eng. Commun. 202, 1289–1295 (2015). https://doi.org/10.1080/00986445.2014.921621

    Article  Google Scholar 

  8. M.S. Lee, R. Banda, S.H. Min, Separation of Hf(IV)–Zr(IV) in H2SO4 solutions using solvent extraction with D2EHPA or Cyanex 272 at different reagent and metal ion concentrations. Hydrometallurgy 152, 84–90 (2015). https://doi.org/10.1016/j.hydromet.2014.12.005

    Article  Google Scholar 

  9. L.Y. Wang, M.S. Lee, Separation of Zr and Hf from sulfuric acid solutions with amine-based extractants by solvent extraction. Sep. Purif. Technol. 142, 83–89 (2015). https://doi.org/10.1016/j.seppur.2015.01.001

    Article  Google Scholar 

  10. R. Banda, M.S. Lee, Solvent extraction for the separation of Zr and Hf from aqueous solutions. Sep. Purif. Rev. 44, 199–215 (2015). https://doi.org/10.1080/15422119.2014.920876

    Article  Google Scholar 

  11. M. Aliakbari, K. Saberyan, M. Noaparast et al., Separation of hafnium and zirconium using TBP modified ferromagnetic nanoparticles: effects of acid and metals concentrations. Hydrometallurgy 146, 72–75 (2014). https://doi.org/10.1016/j.hydromet.2014.03.002

    Article  Google Scholar 

  12. M. Taghizadeh, M. Ghanadi, E. Zolfonoun, Separation of zirconium and hafnium by solvent extraction using mixture of TBP and Cyanex 923. J. Nucl. Mater. 412, 334–337 (2011). https://doi.org/10.1016/j.jnucmat.2011.03.033

    Article  Google Scholar 

  13. G. Pandey, S. Mukhopadhyay, A.U. Renjith et al., Recovery of Hf and Zr from slurry waste of zirconium purification plant using solvent extraction. Hydrometallurgy 163, 61–68 (2016). https://doi.org/10.1016/j.hydromet.2016.03.005

    Article  Google Scholar 

  14. B.R. Reddy, J.R. Kumar, Studies on liquid–liquid extraction of tetravalent hafnium from weakly hydrochloric acid solutions by LIX 84-IC. Sep. Purif. Technol. 42, 169–174 (2005). https://doi.org/10.1016/j.seppur.2004.07.010

    Article  Google Scholar 

  15. J.S. Gaudh, V.M. Shinde, Analytical separation of titanium(IV), zirconium(IV) and hafnium(IV) using tris(2-ethylhexyl)phosphate as an extractant. Anal. Lett. 28, 1107–1125 (1995). https://doi.org/10.1080/00032719508002682

    Article  Google Scholar 

  16. J. Kumar, B. Reddy, J. Koduru et al., Liquid-liquid extraction of tetravalent hafnium from acidic chloride solutions using bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex 301). Sep. Sci. Technol. 42, 865–877 (2007). https://doi.org/10.1080/01496390601173986

    Article  Google Scholar 

  17. R. Banda, H.Y. Lee, M.S. Lee, Separation of Zr from Hf in hydrochloric acid solution using amine-based extractants. Ind. Eng. Chem. Res. 51, 9652–9660 (2012). https://doi.org/10.1021/ie3008264

    Article  Google Scholar 

  18. S. Chen, Z. Zhang, S. Kuang et al., Separation of zirconium from hafnium in sulfate medium using solvent extraction with a new reagent BEAP. Hydrometallurgy 169, 607–611 (2017). https://doi.org/10.1016/j.hydromet.2017.04.001

    Article  Google Scholar 

  19. R. Banda, H.Y. Lee, M.S. Lee, Separation of Zr from Hf in acidic chloride solutions by using TOPO and its mixture with other extractants. J. Radioanal. Nucl. Ch. 298, 259–264 (2013). https://doi.org/10.1007/s10967-012-2349-y

    Article  Google Scholar 

  20. B. Ramachandra Reddy, J. Rajesh Kumar, K. Phani Raja et al., Solvent extraction of Hf(IV) from acidic chloride solutions using Cyanex 302. Miner. Eng. 17, 939–942 (2004). https://doi.org/10.1016/j.mineng.2004.04.004

    Article  Google Scholar 

  21. R.G. Pearson, Hard and soft acid and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963). https://doi.org/10.1016/B978-0-12-395706-1.50007-8

    Article  Google Scholar 

  22. A. Boussaha, J.C. Abbe, A. Haessler, Influence of the acidity on the polymerisation of Hf(IV) in aqueous solutions of HfOCl2 observed by the time differential perturbed angular correlation technique. J. Inorg. Nucl. Chem. 39, 853–855 (1977). https://doi.org/10.1016/0022-1902(77)80168-1

    Article  Google Scholar 

  23. R.K. Biswas, M.A. Hayat, Solvent extraction of zirconium(IV) from chloride media by D2EHPA in kerosene. Hydrometallurgy 63, 149–158 (2002). https://doi.org/10.1016/S0304-386X(01)00220-1

    Article  Google Scholar 

  24. L.Y. Wang, M.S. Lee, Separation of zirconium and hafnium from nitric acid solutions with LIX 63, PC 88A and their mixture by solvent extraction. Hydrometallurgy 150, 153–160 (2014). https://doi.org/10.1016/j.hydromet.2014.10.009

    Article  Google Scholar 

  25. H. Lee, S. Gyu Kim, J. Kee Oh, Stoichiometric relation for extraction of zirconium and hafnium from acidic chloride solutions with Versatic Acid 10. Hydrometallurgy 73, 91–97 (2004). https://doi.org/10.1016/j.hydromet.2003.08.004

    Article  Google Scholar 

  26. M. Taghizadeh, R. Ghasemzadeh, S.N. Ashrafizadeh et al., Determination of optimum process conditions for the extraction and separation of zirconium and hafnium by solvent extraction. Hydrometallurgy 90, 115–120 (2008). https://doi.org/10.1016/j.hydromet.2007.10.002

    Article  Google Scholar 

  27. B.V. Pershina, D. Trubert, C. Le Naour et al., Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions. Radiochim. Acta 90, 869–877 (2002). https://doi.org/10.1524/ract.2002.90.12_2002.869

    Article  Google Scholar 

  28. B. Reddy, R.K. Jyothi, A. Reddy, Solvent extraction of tetravalent hafnium from acidic chloride solutions using 2-ethyl hexyl phosphonic acid mono-2-ethyl hexyl ester (PC-88A). Miner. Eng. 17, 553–556 (2004). https://doi.org/10.1016/j.hydromet.2003.07.002

    Article  Google Scholar 

  29. X.-J. Peng, Y. Cui, J.-F. Ma et al., Extraction of lanthanide ions with N, N, N′, N′-tetrabutyl-3-oxa-diglycolamide from nitric acid media. Nucl. Sci. Tech. 28, 87 (2017). https://doi.org/10.1007/s41365-017-0229-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Xin Sun or Yuan Qian.

Additional information

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR201702160381).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Sun, GX., Qian, Y. et al. Separation of hafnium from zirconium in hydrochloric acid solution with di(2-ethylhexyl)phosphoric acid by solvent extraction. NUCL SCI TECH 30, 22 (2019). https://doi.org/10.1007/s41365-019-0548-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0548-8

Keywords

Navigation