Skip to main content
Log in

Preliminary results of a Compton camera based on a single 3D position-sensitive CZT detector

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A Compton camera prototype has been developed using a pixelated CZT detector with 4-by-4 pixels. Signals of the detector are read out by a VASTAT ASIC that is controlled by a self-developed DAQ board. The DAQ software is developed using LabVIEW, and the offline Compton imaging codes are written in C++. The prototype has been successfully calibrated, and its capabilities for source detection, spectroscopy, and Compton imaging have been demonstrated using a Cs-137 source. The angular resolution of the 662 keV line is 36° FWHM for the simple back-projection method and 9.6° FWHM for the MLEM reconstruction method. The system is ready to be extended to 11-by-11 pixels in the future, and a better imaging quality can be expected due to the better relative position resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G. Zentai, X-ray imaging for homeland security. Int. J. Signal Imaging Syst. Eng. 3(1), 13–20 (2010). https://doi.org/10.1504/IJSISE.2010.034628

    Article  Google Scholar 

  2. A. Zoglauer, M. Galloway, M. Amman, et al., First results of the high efficiency multi-mode imager (HEMI), in 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). IEEE (2009), pp. 887–891. https://doi.org/10.1109/nssmic.2009.5402475

  3. S.I. Takeda, A. Harayama, Y. Ichinohe et al., A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances. Nucl. Instrum. Meth. A 787, 207–211 (2015). https://doi.org/10.1016/j.nima.2014.11.119

    Article  Google Scholar 

  4. C.G. Wahl, W.R. Kaye, W. Wang et al., The Polaris-H imaging spectrometer. Nucl. Instrum. Meth. A 784, 377–381 (2015). https://doi.org/10.1016/j.nima.2014.12.110

    Article  Google Scholar 

  5. Z. He, W. Li, G.F. Knoll et al., 3-D position sensitive CdZnTe gamma-ray spectrometers. Nucl. Instrum. Meth. A 422(1–3), 173–178 (1999). https://doi.org/10.1016/S0168-9002(98)00950-4

    Article  Google Scholar 

  6. L. Mihailescu, K.M. Vetter et al., SPEIR: a Ge Compton camera. Nucl. Instrum. Meth. A 570(1), 89–100 (2007). https://doi.org/10.1016/j.nima.2006.09.111

    Article  Google Scholar 

  7. D. Xu, et al., 4-pi Compton imaging with single 3D position sensitive CdZnTe detector. Proc. SPIE. (2004). https://doi.org/10.1117/12.563905

  8. G.F. Knoll, Radiation Detection and Measurement, 3rd edn. (Wiley, Hoboken, 2000), p. 802

    Google Scholar 

  9. Y. Li et al., Design and construction of a TPC prototype based on GEM detector readout. Chin. Phys. C 32(1), 52 (2008)

    Article  Google Scholar 

  10. B. Plimley, C. Daniel, C. Amy et al., Reconstruction of electron trajectories in high-resolution Si devices for advanced Compton imaging. Nucl. Instrum. Meth. A. 652(1), 595–598 (2011). https://doi.org/10.1016/j.nima.2011.01.133

    Article  Google Scholar 

  11. L. Swiderski et al., Measurement of Compton edge position in low-Z scintillators. Radiat. Meas. 45(3), 605–607 (2010). https://doi.org/10.1016/j.radmeas.2009.10.015

    Article  Google Scholar 

  12. C. Lehner, 4-pi Compton imaging using a single 3-d position sensitive CdZnTe detector. Dissertation, University of Michigan (2004)

  13. J.H. Hubbell et al., Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. Ref. Data 4(3), 471–538 (1975). https://doi.org/10.1063/1.555523

    Article  Google Scholar 

  14. J.M. Jaworski, Compton Imaging Algorithms for Position-Sensitive Gamma-Ray Detectors in the Presence of Motion. Dissertation, University of Michigan (2013)

  15. C.L. Parra, C. Lucas, Reconstruction of cone-beam projections from Compton scattered data. IEEE Trans. Nucl. Sci. 47(4), 1543–1550 (2000). https://doi.org/10.1109/23.873014

    Article  Google Scholar 

  16. L.A. Shepp, V. Yehuda, Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982). https://doi.org/10.1109/TMI.1982.4307558

    Article  Google Scholar 

  17. H.H. Barrett, W. Timothy, L.C. Parra, List-mode likelihood. JOSA A 14(11), 2914–2923 (1997). https://doi.org/10.1364/JOSAA.14.002914

    Article  Google Scholar 

  18. XCOM: Photon cross sections database. https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html

  19. F. Zhang et al., 3-D position sensitive CdZnTe spectrometer performance using third generation VAS/TAT readout electronics. IEEE Trans. Nucl. Sci. 52(5), 2009–2016 (2005). https://doi.org/10.1109/TNS.2005.856821

    Article  Google Scholar 

  20. ROOT Data Analysis Framework, https://root.cern.ch/

  21. J. Fu, Y. Li, L. Zhang et al., A novel CZT detector using strengthened electric field line anode. Chin. Phys. C 38(12), 126003 (2014). https://doi.org/10.1088/1674-1137/38/12/126003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Lin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YL., Fu, JQ., Li, YL. et al. Preliminary results of a Compton camera based on a single 3D position-sensitive CZT detector. NUCL SCI TECH 29, 145 (2018). https://doi.org/10.1007/s41365-018-0483-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0483-0

Keywords

Navigation