Skip to main content
Log in

\(J/\psi \) production in p+p and p+Pb collisions at ultrarelativistic energies

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The production of \(J/\psi \) mesons in p+p and p+Pb collisions is studied in the framework of color-glass condensate together with a simple color evaporation model. Considering the nuclear effects with the Glauber–Gribov approach, we calculate the cross section and the nuclear modification factor of forward \(J/\psi \) production in p+Pb collisions at \(\sqrt{s}=5.02\) TeV. Then, the backward \(J/\psi \) production in p+Pb collisions at \(\sqrt{s}=8.16\) TeV is also analyzed. In our calculation, the phenomenology KLR-AdS/CFT model and the rcBK approach, which are valid at a small x, are used to calculate the three-point function. It is shown that the theoretical results fit well with the experimental data from ALICE and LHCb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

The data come from ALICE [30]

Fig. 3

The data come from ALICE [31] and LHCb [32]

Fig. 4

The data come from ALICE [31, 33]

Fig. 5

The data are from LHCb [34]

Similar content being viewed by others

References

  1. H. Fujii, K. Watanabe, Leptons from heavy-quark semileptonic decay in pA collisions within the CGC framework. Nucl. Phys. A 951, 45 (2016). https://doi.org/10.1016/j.nuclphysa.2016.03.045

    Article  Google Scholar 

  2. B. Ducloue, T. Lappi, H. Mantysaari, Centrality-dependent forward \(J/\psi \) production in high energy proton–nucleus collisions. EPJ Web Conf. 112, 04002 (2016). https://doi.org/10.1051/epjconf/201611204002

    Article  Google Scholar 

  3. Y.Q. Ma, R. Venugopalan, H.F. Zhang, \(J/\psi \) production and suppression in high-energy proton–nucleus collisions. Phys. Rev. D 92, 071901 (2015). https://doi.org/10.1103/PhysRevD.92.071901

    Article  Google Scholar 

  4. H. Fujii, K. Watanabe, Nuclear modification of forward D production in pPb collisions at the LHC. arXiv:1706.06728

  5. Y.M. Shabelski, A.G. Shuvaev, I.V. Surnin, Heavy quark production in \(k_{t}\) factorization approach at LHC energies. Int. J. Mod. Phys. A 33, 1850003 (2018). https://doi.org/10.1142/S0217751X18500033

    Article  Google Scholar 

  6. H.M. Wang, X.J. Sun, B.A. Zhang, \(x_{F}\)(or y)-dependence of nuclear absorption and energy loss effects on \(J/\psi \) production. Commun. Theor. Phys. 52, 1049 (2009). https://doi.org/10.1088/0253-6102/52/6/14

    Article  Google Scholar 

  7. R. Vogt, Shadowing and absorption effects on \(J/\psi \) production in dA collisions. Phys. Rev. C 71, 054902 (2005). https://doi.org/10.1103/PhysRevC.71.054902

    Article  Google Scholar 

  8. E. Iancu, K. Itakura, S. Munier, Saturation and BFKL dynamics in the HERA data at small-x. Phys. Lett. B 590, 199 (2004). https://doi.org/10.1016/j.physletb.2004.02.040

    Article  Google Scholar 

  9. G. Soyez, Saturation QCD predictions with heavy quarks at HERA. Phys. Lett. B 655, 32 (2007). https://doi.org/10.1016/j.physletb.2007.07.076

    Article  Google Scholar 

  10. K. Golec-Biernat, M. Wüsthoff, Saturation effects in deep inelastic scattering at low \(Q^{2}\) and its implications on diffraction. Phys. Rev. D 59, 014017 (1999). https://doi.org/10.1103/PhysRevD.59.014017

    Article  Google Scholar 

  11. H.M. Wang, Z.Y. Hou, X.J. Sun, Hadron multiplicities in p+p and p+Pb collisions at the LHC. Nucl. Sci. Tech. 25, 040502 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.040502

    Google Scholar 

  12. Y.V. Kovchegov, Z. Lu, A.H. Rezaeian, Comparing AdS/CFT calculations to HERA \(F_{2}\) data. Phys. Rev. D 80, 074023 (2009). https://doi.org/10.1103/PhysRevD.80.074023

    Article  Google Scholar 

  13. Y.V. Kovchegov, AdS/CFT applications to relativistic heavy-ion collisions: a brief review. Rep. Prog. Phys. 75, 12 (2012). https://doi.org/10.1088/0034-4885/75/12/124301

    Article  Google Scholar 

  14. D. Kharzeev, E. Levin, M. Nardi, QCD saturation and deuteron–nucleus collisions. Nucl. Phys. A 730, 448 (2004). https://doi.org/10.1016/j.nuclphysa.2003.08.031

    Article  Google Scholar 

  15. G. Karapetyan, The nuclear configurational entropy impact parameter dependence in the Color-Glass Condensate. EPL 118, 38001 (2017). https://doi.org/10.1209/0295-5075/118/38001

    Article  Google Scholar 

  16. G. Karapetyan, Fine-tuning the Color-Glass Condensate with the nuclear configurational entropy. EPL 117, 18001 (2017). https://doi.org/10.1209/0295-5075/117/18001

    Article  Google Scholar 

  17. A.E. Bernardini, R. da Rocha, Entropic information of dynamical AdS/QCD holographic models. Phys. Lett. B 762, 107 (2016). https://doi.org/10.1016/j.physletb.2016.09.023

    Article  MATH  Google Scholar 

  18. A.E. Bernardini, N.R.F. Braga, R. da Rocha, Configurational entropy of glueball states. Phys. Lett. B 765, 81 (2017). https://doi.org/10.1016/j.physletb.2016.12.007

    Article  MATH  Google Scholar 

  19. N.R.F. Braga, R. da Rocha, AdS/QCD duality and the quarkonia holographic information entropy. Phys. Lett. B 776, 78 (2018). https://doi.org/10.1016/j.physletb.2017.11.034

    Article  Google Scholar 

  20. N.R.F. Braga, R. da Rocha, Configurational entropy of anti-de Sitter black holes. Phys. Lett. B 767, 386 (2017). https://doi.org/10.1016/j.physletb.2017.02.031

    Article  MathSciNet  Google Scholar 

  21. A. Dumitru, D.E. Kharzeev, E.M. Levin et al., Gluon saturation in pA collisions at energies available at the CERN Large Hadron Collider: predictions for hadron multiplicities. Phys. Rev. C 85, 044920 (2012). https://doi.org/10.1103/PhysRevC.85.044920

    Article  Google Scholar 

  22. H.M. Wang, J.F. Liu, Z.Y. Hou et al., Pseudo-rapidity distributions of charged hadrons in pp and pA collisions at the LHC. Chin. Phys. C 37, 084102 (2013). https://doi.org/10.1088/1674-1137/37/8/084102

    Article  Google Scholar 

  23. H. Fujii, K. Watanabe, Heavy quark pair production in high-energy pA collisions: Quarkonium. Nucl. Phys. A 915, 1 (2013). https://doi.org/10.1016/j.nuclphysa.2013.06.011

    Article  Google Scholar 

  24. S. Kretzer, H.L. Lai, F.I. Olness et al., CTEQ6 parton distributions with heavy quark mass effects. Phys. Rev. D 69, 114005 (2004). https://doi.org/10.1103/PhysRevD.69.114005

    Article  Google Scholar 

  25. J.L. Albacete, N. Armesto, J.G. Milhano et al., Nonlinear QCD meets data: a global analysis of lepton–proton scattering with running coupling Balitsky–Kovchegov evolution. Phys. Rev. D 80, 034031 (2009). https://doi.org/10.1103/PhysRevD.80.034031

    Article  Google Scholar 

  26. M.L. Miller, K. Reygers, S.J. Sanders et al., Glauber modeling in high-energy nuclear collisions. Annu. Rev. Nucl. Part. Sci. 57, 205 (2007). https://doi.org/10.1146/annurev.nucl.57.090506.123020

    Article  Google Scholar 

  27. C.W. Ma, Y.G. Ma, Shannon information entropy in heavy-ion collisions. Prog. Part. Nucl. Phys. 99, 120 (2018). https://doi.org/10.1016/j.ppnp.2018.01.002

    Article  Google Scholar 

  28. U. Heinz, J.S. Moreland, Energy dependent growth of the nucleon and hydrodynamic initial conditions. Phys. Rev. C 84, 054905 (2011). https://doi.org/10.1103/PhysRevC.84.054905

    Article  Google Scholar 

  29. H. Fujii, F. Gelis, R. Venugopalan, Quark pair production in high energy pA collisions: general features. Nucl. Phys. A 780, 146 (2006). https://doi.org/10.1016/j.nuclphysa.2006.09.012

    Article  Google Scholar 

  30. ALICE Collaboration, Measurement of quarkonium production at forward rapidity in pp collisions at \(\sqrt{s}\) = 7 TeV. Eur. Phys. J. C 74, 2974 (2014). https://doi.org/10.1140/epjc/s10052-014-2974-4

  31. ALICE Collaboration, \(J/\psi \) production and nuclear effects in p-Pb collisions at \(\sqrt{s_{\rm NN}}\,=\,5.02\) TeV. JHEP 1402, 073 (2014). https://doi.org/10.1007/JHEP02(2014)073

  32. LHCb Collaboration, Study of \(J/\psi \) production and cold nuclear matter effects in pPb collisions at \(\sqrt{s_{NN}}\,=\,5 \rm TeV\). JHEP 1402, 072 (2014). https://doi.org/10.1007/JHEP02(2014)072

  33. ALICE Collaboration, Charmonium Production at forward rapidity in pp, p-Pb and Pb-Pb collisions, with ALICE. arXiv:1409.4458

  34. LHCb Collaboration, Prompt and nonprompt \(J/\psi \) production and nuclear modification in pPb collisions at \(\sqrt{s_\text{NN}}\) = 8.16 TeV. Phys. Lett. B 774, 159 (2017). https://doi.org/10.1016/j.physletb.2017.09.058

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Min Wang.

Additional information

This work was supported by the Natural Science Foundation of Hebei Province (A2012210043).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HM., Hou, ZY., Wang, XT. et al. \(J/\psi \) production in p+p and p+Pb collisions at ultrarelativistic energies. NUCL SCI TECH 29, 116 (2018). https://doi.org/10.1007/s41365-018-0452-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0452-7

Keywords

Navigation