Skip to main content
Log in

Radionuclide concentrations in sand samples from riverbanks of Muzaffarabad, Azad Kashmir

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

This paper presents the results of a radiological risk assessment arising from the presence of naturally occurring radionuclides in sand samples from three riverbanks in Muzaffarabad. The mean values obtained for 232Th, 226Ra, and 40K were found to be 44.58 ± 3.34, 48.25 ± 1.77, and 239.92 ± 22.73 Bq kg−1, respectively. To assess the uniformity of exposure, the radium equivalent activity (Raeq) was calculated and was found to be 130.47 ± 8.29 Bq kg−1. The current reported value for Raeq is lower than the maximum permissible value, that is, 370 Bq kg−1, and equivalent to a gamma dose of 1.5 mSv y−1. To investigate the possible contribution to health risks of alpha particle exposure, the radon exhalation rate (RER) from the sand samples was determined. The mean RER for all the samples was found to be 335 mBq m−2 h−1. About 43% of the samples were found to have an indoor excess lifetime cancer risk value slightly higher than recommended safety limit of 1, as proposed by the ICRP. A normalized parameter, the equivalent multiplicative factor, was defined and used to compare the current results with the findings of studies performed in other countries. Our findings are relevant to both human health and future environmental radiation monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. NCRP, Exposures from the Uranium Series with Emphasis on Radon and Its Daughters (National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue 1Bethesda, Report No. 77, 1984)

  2. NEA-OECD, Nuclear Energy Agency. Exposure to radiation from natural radioactivity in building materials (Report by NEA Group of Experts, OECD, Paris, 1979)

  3. UNSCEAR, Sources, Effects and Risks of Ionizing Radiation (United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations New York, 1993)

  4. UNSCEAR, Sources and effects of ionizing radiation (United Nations Scientific Committee on the Effects of Atomic radiation, Report to the General Assembly of the United Nations with Scientific Annexes, United Nations Sales Publication New York, 2000)

  5. ECRP, Protection, Radiological Protection Principles concerning the Natural Radioactivity of Building (European Commission Radiation Materials Directorate-General Environment, Nuclear Safety and Civil Protection, Report 112, STUK (Finland), 1999)

  6. G. Gonzalez-Chornet, J. Gonzalez-Labajo, Natural radioactivity in beach sands from Donana National Park and Mazagon (SPAIN). Radiat. Prot. Dosim. 112, 307–310 (2004). https://doi.org/10.1093/rpd/nch3977

    Article  Google Scholar 

  7. F.O. Brigido, E.N. Montalvan, Z.J. Tomas et al., Natural radioactivity in some building materials in cuba and their contribution to the indoor gamma dose rate. Radiat. Prot. Dosim. 113, 218–222 (2005). https://doi.org/10.1093/rpd/nch434

    Article  Google Scholar 

  8. N. Hizem, B.A. Fredj, L. Ghedira et al., Determination of natural radioactivity in building materials used in Tunisian dwellings by gamma ray spectrometry. Radiat. Prot. Dosim. 114, 533–537 (2005). https://doi.org/10.1093/rpd/nch489

    Article  Google Scholar 

  9. I.P. Farai, J.A. Ademola, Radium equivalent activity concentrations in concrete building blocks in eight cities in Southwestern Nigeria. J. Environ. Radioact. 79, 119–125 (2005). https://doi.org/10.1016/j.jenvrad.2004.05.016

    Article  Google Scholar 

  10. S.U. El-Kameesy, S.A. El-Ghany, Sm E-Minyawi et al., Natural radioactivity of beach sand samples in the Tripoli region. Northwest Libya Turk. J. Eng. Environ. Sci. 32, 245–251 (2008)

    Google Scholar 

  11. U. Cevik, N. Damla, A.I. Koby et al., Assessment of natural radioactivity of sand used in Turkey. J. Radiol. Prot. 29(1), 61 (2009). https://doi.org/10.1088/0952-4746/29/1/004

    Article  Google Scholar 

  12. A. Jabbar, W. Arshed, A.S. Bhatti et al., Measurement of soil radioactivity levels and radiation hazard assessment in southern Rechna interfluvial region, Pakistan. Environ Mon Assess 169, 429–438 (2010). https://doi.org/10.1007/s10661-009-1185-1

    Article  Google Scholar 

  13. M. Rafique, S.U. Rahman, T. Mahmood et al., Radon exhalation rate from, soil, sand, bricks, and sedimentary samples collected from Azad Kashmir, Pakistan. Russ. Geol. Geophys. 52, 451–458 (2011). https://doi.org/10.1016/j.rgg.2011.03.007

    Article  Google Scholar 

  14. M. Rafique, H. Rehman, Matiullah et al., Assessment of radiological hazards due to soil and building materials used in Mirpur Azad Kashmir, Pakistan. Iran. J. Radiat. Res. 9, 77–87 (2011)

    Google Scholar 

  15. M. Rafique, M.H. Rathore, Determination of radon exhalation from granite, dolerite and marbles decorative stones of the Azad Kashmir area, Pakistan. Int. J. Environ. Sci. Technol. 10, 1083–1090 (2013). https://doi.org/10.1007/s13762-013-0288-y

    Article  Google Scholar 

  16. M. Rafique, Ambient indoor/outdoor gamma radiation dose rates in the city and at high altitudes of Muzaffarabad (Azad Kashmir). Environ. Earth Sci. 70, 1783–1790 (2013). https://doi.org/10.1007/s12665-013-2266-6

    Article  Google Scholar 

  17. M. Rafique, M. Basharat, S. Azhar et al., Effect of geology and altitude on ambient outdoor gamma dose rates in district Poonch, Azad Kashmir. Carpathian J. Earth Environ. Sci. 8, 165–173 (2013)

    Google Scholar 

  18. M. Rafique, A. Jabbar, A.R. Khan, Radiometric analysis of rock and soil samples of Leepa Valley; Azad Kashmir, Pakistan. J. Radioanal. Nucl. Chem. 298, 2049–2056 (2013). https://doi.org/10.1007/s10967-013-2681-x

    Article  Google Scholar 

  19. S.U. Rahman, F.Malik Matiullah et al., Measurement of naturally occurring/fallout radioactive elements and assessment of annual effective dose in soil samples collected from four districts of the Punjab Province Pakistan. J. Radioanal. Nucl. Chem. 287, 647–655 (2011). https://doi.org/10.1007/s10967-010-0819-7

    Article  Google Scholar 

  20. S.U. Rahman, M. Rafique, 232Th, 226Ra, and 40K activities and associated radiological hazards in building materials of Islamabad capital territory, Pakistan. Nucl. Technol. Radiat. Prot. 27, 392–398 (2012). https://doi.org/10.2298/NTRP1204392R21

    Article  Google Scholar 

  21. S.U. Rahman, M. Rafique, A. Jabbar et al., Radiological hazards due to naturally occurring radionuclides in the selected building materials used for the construction of dwellings in four districts of the Punjab province, Pakistan. Radiat. Prot. Dosim. 153, 352–360 (2013). https://doi.org/10.1093/rpd/ncs109

    Article  Google Scholar 

  22. M.A. Baloch, A.A. Qureshi, A. Waheed et al., A study on natural radioactivity in Khewra salt mines, Pakistan. J. Radiat. Res. 53, 411–421 (2012). https://doi.org/10.1269/jrr.11162

    Article  Google Scholar 

  23. X. Ding, X. Lu, C. Zhao et al., Measurement of natural radioactivity in building materials used in Urumqi, China. Radiat. Prot. Dosim. 155, 374–379 (2013). https://doi.org/10.1093/rpd/nct002

    Article  Google Scholar 

  24. M.A. Arnedo, A. Tejera, J.G. Rubiano et al., Natural radioactivity measurements of beach sands in Gran Canaria, Canary Islands (Spain). Radiat. Prot. Dosim. 156, 75–86 (2013). https://doi.org/10.1093/rpd/nct044

    Article  Google Scholar 

  25. A.A. Qureshi, I.A.K. Jadoon, A.A. Wajid et al., Study of natural radioactivity in mansehra granite, Pakistan: environmental concerns. Radiat. Prot. Dosim. 158, 466–478 (2014). https://doi.org/10.1093/rpd/nct271

    Article  Google Scholar 

  26. BEIR VI, Health Effects of Exposure to Radon (National Academy Press, Washington, DC, 1999)

    Google Scholar 

  27. Y. Sakoda, Y. Ishimori, A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Appl. Radiat. Isot. 69, 1422–1435 (2011)

    Article  Google Scholar 

  28. J.M. Stajic, D. Nikezic, Theoretical calculation of radon emanation fraction. Nucl. Instrum. Methods Phys. Res. B 336, 19–25 (2014). https://doi.org/10.1016/j.nimb.2014.06.013

    Article  Google Scholar 

  29. T. Sasaki, Y. Gunji, T. Okuda, Demonstration of a method to suppress radon emanation from uranium bearing wastes. Nucl. Sci. Technol. 41, 843–849 (2004). https://doi.org/10.1080/18811248.2004.9715555

    Article  Google Scholar 

  30. C. Duenas, M.C. Fernandez, J. Carretero et al., Release of 222Rn from some soils. Ann. Geophys. 15(1), 124–133 (1997). https://doi.org/10.1007/s00585-997-0124-0

    Google Scholar 

  31. S.A. Durrani, R. Ilic, Radon measurements by Etched Track Detectors (World Scientific, London, 1997)

    Book  Google Scholar 

  32. S. Rehman, S.Rehman Matiullah et al., Studying 222Rn exhalation rate from soil and sand samples using CR-39 detector. Radiat. Meas. 41(6), 708–713 (2006). https://doi.org/10.1016/j.radmeas.2006.03.005

    Article  Google Scholar 

  33. K. Debertin, F.G. Helmer, Gamma and X-ray Spectrometry with Semiconductor Detectors (North Holland, Amsterdam, 1988)

    Google Scholar 

  34. G. Heusser, H.V. Klapdor, A. Ptepki et al., Construction of a low-level Ge detector. Appl. Radiat. Isot. 40, 393 (1989). https://doi.org/10.1016/0883-2889(89)90203-7

    Article  Google Scholar 

  35. W. Westmeier, Techniques and problems of low level gamma ray spectrometry. Appl. Radiat. Isot. 43, 305 (1992). https://doi.org/10.1016/0883-2889(92)90102-K

    Article  Google Scholar 

  36. A.B. Fredj, N. Hizem, M. Chelbi et al., Quantitative analysis of gamma-ray emitters radioisotopes in commercialized bottled water in Tunisia. Radiat. Prot. Dosim 117(4), 419–424 (2005). https://doi.org/10.1093/rpd/nci315

    Article  Google Scholar 

  37. J. Beretka, P.J. Mathew, Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 48, 87–95 (1985)

    Article  Google Scholar 

  38. S. Righi, L. Bruzzi, Natural radioactivity and radon exhalation in building materials used in Italian dwellings. Environ. Radioact. 88, 158–570 (2006). https://doi.org/10.1016/j.jenvrad.2006.01.009

    Article  Google Scholar 

  39. L. Xinwei, W. Lingqing, J. Xiaodan et al., Specific activity and hazards of Archeozoic-Cambrian rock samples collected from the Weibei area of Shaanxi, China. Radiat. Prot. Dosim. 118(3), 352–359 (2006). https://doi.org/10.1093/rpd/nci339

    Article  Google Scholar 

  40. UNSCEAR, Sources and effects of ionizing radiation (United Nations Scientific Committee on the effects of atomic radiation, New York, United Nations, 1988)

  41. Matiullah Determination of the calibration factor for, CR-39 based indoor radon detector. J. Radioanal. Nucl. Chem. 298(1), 369–373 (2013). https://doi.org/10.1007/s10967-013-2451-9

    Article  Google Scholar 

  42. M. Rafique, S.U. Rahman, M. Basharat et al., Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley. J. Radiat. Res. Appl. Sci. 7(1), 28–35 (2014). https://doi.org/10.1016/j.jrras.2013.11.005

    Google Scholar 

  43. ICRP, International Commission on Radiological Protection (ICRP Publication 60. Elmsford, NY, Pergamon, 1991)

  44. H. Taskin, M. Karavus, P. Topuzoglu et al., Radionuclide concentrations in soil and lifetime cancer risk due to the gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 100, 49–53 (2009). https://doi.org/10.1016/j.jenvrad.2008.10.012

    Article  Google Scholar 

  45. M. Tufail, A. Nasim, M. Waqas et al., Measurement of terrestrial radiation for assessment of gamma dose from cultivated and barren saline soils of Faisalabad in Pakistan. Radiat. Meas. 41(4), 443–451 (2006). https://doi.org/10.1016/j.radmeas.2005.10.007

    Article  Google Scholar 

  46. M. Armstrong, Basic Linear Geostatistics (Springer, Berlin, 1998). http://books.google.com/books?id=_9vp11VuMCsC&pgis=1

  47. D.D. Sarma, Geostatistics with Applications in Earth Sciences, 2nd edn. (Springer, Dordrecht, 2009). https://doi.org/10.1007/978-1-4020-9380-7

    Book  MATH  Google Scholar 

  48. T. Dindaroğlu, The use of the GIS Kriging technique to determine the spatial changes of natural radionuclide concentrations in soil and forest cover. J. Environ. Health Sci. Eng. 12, 1–11 (2014). https://doi.org/10.1186/s40201-014-0130-6

    Article  Google Scholar 

  49. A. Baeza, M. Del Rio, C. Miro et al., Natural radioactivity in soils in the province of Caceres (Spain). Radiat. Prot. Dosim. 45(1), 261–263 (1992). https://doi.org/10.1093/oxfordjournals.rpd.a081539

    Article  Google Scholar 

  50. J.G. Ackers, J.F. Den-Boer, P. De-Jong et al., Radioactivity and radon exhalation rates of building materials in the Netherlands. Sci. Total Environ. 45, 151–156 (1985). https://doi.org/10.1016/0048-9697(85)90215-3

    Article  Google Scholar 

  51. A. Buttaglia, L. Bramati, Environmental radiation survey around a cool-fired power plant site. Radiat. Prot. Dosim. 24, 407–410 (1988)

    Article  Google Scholar 

  52. T.Y. Chang, W.L. Cheng, P.S. Weng, Potassium uranium, and thorium contents in building material of Taiwan. Health Phys. 27, 385–387 (1974)

    Google Scholar 

  53. S. Chong, G.U. Ahmad, Gamma activity of some building materials in west Malaysia. Health Phys. 43(2), 272–273 (1982)

    Google Scholar 

  54. M. Chung-Keung, L. Shun-Yin, A. Shui-Chun et al., Radionuclide contents in building materials used in Hong Kong. Health Phys. 57(3), 397–401 (1989)

    Article  Google Scholar 

  55. M.H. El-Mamoney, A.E.M. Khater, Environmental characterization and radio-ecological impacts of non-nuclear industries on the red sea coast. Environ. Radiol. 73(2), 151–168 (2004). https://doi.org/10.1016/j.jenvrad.2003.08.008

    Article  Google Scholar 

  56. G. Espinosa, J.I. Golzarri, I. Gamboa et al., Natural radioactivity in Mexican building material by SSNTD. Nucl. Trac. Radiat. Meas. 12, 767–770 (1986). https://doi.org/10.1016/1359-0189(86)90699-0

    Article  Google Scholar 

  57. P. Hayumbu, M.B. Zaman, N.C.H. Lubaba et al., Natural radioactivity in Zambian building materials collected from Lusaka. J. Radioanal. Nucl. Chem. 199(3), 229–238 (1995). https://doi.org/10.1007/BF02162371

    Article  Google Scholar 

  58. R.H. Higgy, Natural radionuclides and plutonium isotopes in soil and shore sediments on alexandria mediterranean sea coast of Egypt. Radiol. Chim. Acta 88(1), 47–57 (2000). https://doi.org/10.1524/ract.2000.88.1.047

    Google Scholar 

  59. M.N. Kumru, Possible Uranium Rich in the Aegean Region of Turkey. Appl. Radiat. Isot. 48, 295–299 (1997). https://doi.org/10.1016/S0969-8043(96)00047-4

    Article  Google Scholar 

  60. K. Khalid, P. Akhter, S.D. Orfi et al., Estimation of radiation doses associated with natural radioactivity in sand samples of the North-Western Areas of Pakistan Using Monte Carlo Simulation. J. Radioanal. Nucl. Chem. 265(3), 371–375 (2005). https://doi.org/10.1007/s10967-005-0835-1

    Article  Google Scholar 

  61. A. Lambrechts, L. Foulquier, J. Garnier-Laplace et al., Natural radioactivity in the aquatic component of the main French rivers. Radiat. Prot. Dosim. 45, 253–256 (1992). https://doi.org/10.1093/rpd/45.1-4.253

    Article  Google Scholar 

  62. X.W. Lu, X.L. Zhang, Measurement of natural radioactivity in sand samples collected from the Baoji Weihe Sands Park, China. Environ. Geol. 50(7), 977–982 (2006). https://doi.org/10.1007/s00254-006-0266-5

    Article  Google Scholar 

  63. A. Malanca, V. Pessina, G. Dallara et al., Radionuclide content of building materials and gamma ray dose rates in dwellings of Rio Grande Do Norte, Brazil. Radiol. Prot. Dosim. 48(2), 199–203 (1993). https://doi.org/10.1093/oxfordjournals.rpd.a081865

    Google Scholar 

  64. R.J. Meijer, I.R. James, P.J. Jennings et al., Cluster analysis of radionuclide concentrations in beach sand. Appl. Radiat. Isot. 54, 535–542 (2001). https://doi.org/10.1016/S0969-8043(00)00196-2

    Article  Google Scholar 

  65. S. Stoulos, M. Manolopoulou, C. Papastefanou et al., Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J. Environ. Radiol. 69(3), 225–240 (2003). https://doi.org/10.1016/S0265-931X(03)00081-X

    Article  Google Scholar 

  66. M. Ngachin, M. Garavaglia, C. Giovani et al., Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials. Radio Meas. 42(1), 61–67 (2007). https://doi.org/10.1016/j.radmeas.2006.07.007

    Article  Google Scholar 

  67. S.Y. Omar, Determination of the Concentration of Natural and Man-Made Radioactivity in the Northeast Region of Libya, Ph.D. thesis. Faculty of Science Cairo University (1997)

  68. H.R. Saad, D. Al-Azmi, Radioactivity concentrations in sediments and their correlation to the coastal structure in Kuwait. Appl. Radiat. Isot. 56(6), 991–997 (2002). https://doi.org/10.1016/S0969-8043(02)00061-1

    Article  Google Scholar 

  69. G. Sciocchetti, F. Scacco, P.G. Baldassini et al., Indoor measurements of airborne natural radioactivity in Italy. Radiat. Prot. Dosim. 7, 347–351 (1984). https://doi.org/10.1093/oxfordjournals.rpd.a083025

    Article  Google Scholar 

  70. G. Travidon, H. Flouro, A. Angelopoulos et al., Environmental Study of the Radioactivity of the Spas in the Island of Ikaria, Greece. Radiat. Prot. Dosim. 63, 63–67 (1996). https://doi.org/10.1093/oxfordjournals.rpd.a031513

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Director General, Pakistan Institute Nuclear Science and Technology (PINSTECH), for allowing us to use their laboratories and the staff for their assistance and technical support. Mr. A. R. Khan is thankful to the Higher Education Commission of Pakistan for their awarding of a PhD Indigenous Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rafique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.R., Rafique, M., Jabbar, A. et al. Radionuclide concentrations in sand samples from riverbanks of Muzaffarabad, Azad Kashmir. NUCL SCI TECH 29, 93 (2018). https://doi.org/10.1007/s41365-018-0442-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0442-9

Keywords

Navigation