Skip to main content
Log in

Heavy ion-induced single event upset sensitivity evaluation of 3D integrated static random access memory

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Heavy ion-induced single event upsets (SEUs) of static random access memory (SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4 simulation toolkit. The SEU cross sections and multiple cell upset (MCU) susceptibility of 3D SRAM are explored using different types and energies of heavy ions. In the simulations, the sensitivities of different dies of 3D SRAM show noticeable discrepancies for low linear energy transfers (LETs). The average percentage of MCUs of 3D SRAM increases from 17.2 to 32.95%, followed by the energy of 209Bi decreasing from 71.77 to 38.28 MeV/u. For a specific LET, the percentage of MCUs presents a notable difference between the face-to-face and back-to-face structures. In the back-to-face structure, the percentage of MCUs increases with a deeper die, compared with the face-to-face structure. The simulation method and process are verified by comparing the SEU cross sections of planar SRAM with experimental data. The upset cross sections of the planar process and 3D integrated SRAM are analyzed. The results demonstrate that the 3D SRAM sensitivity is not greater than that of the planar SRAM. The 3D process technology has the potential to be applied to the aerospace and military fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. Gill, N. Seifert, V. Zia, Comparison of alpha-particle and neutron-induced combinational and sequential logic error rates at the 32 nm technology node, in The 2009 IEEE International Reliability Physics Symposium, Montreal, Canada, April 26–30 (2009), pp. 199–205. https://doi.org/10.1109/irps.2009.5173251

  2. A. Kaouache, F. Wrobel, F. Saigne et al., Analytical method to evaluate soft error rate due to alpha contamination. IEEE Trans. Nucl. Sci. 60, 4059–4066 (2013). https://doi.org/10.1109/TNS.2013.2285401

    Article  Google Scholar 

  3. J.L. Autran, S. Serre, S. Semikh et al., Soft-error rate induced by thermal and low energy neutrons in 40 nm SRAMs. IEEE Trans. Nucl. Sci. 59, 2658–2665 (2012). https://doi.org/10.1109/TNS.2012.2222438

    Article  Google Scholar 

  4. C. Geng, J. Liu, Z.G. Zhang et al., Simulation of the characteristics of low-energy proton induced single event upset. Sci. China Ser. G Phys. Mech. Astron. 57, 1902–1906 (2014). https://doi.org/10.1007/s11433-014-5414-4

    Article  Google Scholar 

  5. Y.P. Fang, A.S. Oates, Muon-induced soft errors in SRAM circuits in the terrestrial environment. IEEE Trans. Device Mater. Reliab. 15, 115–122 (2015). https://doi.org/10.1109/TDMR.2015.2396673

    Article  Google Scholar 

  6. K. Xi, C. Geng, Z.G. Zhang et al., Monte Carlo predictions of proton SEE cross-sections from heavy ion test data. Chin. Phys. C 40, 066001 (2016). https://doi.org/10.1088/1674-1137/40/6/066001

    Article  Google Scholar 

  7. P. Garrou, C. Bower, P. Ramm, Handbook of 3D Integration: Volumes 1 and 2—Technology and Applications of 3D Integrated Circuits (Wiley-VCH, Heppenheim, 2008), pp. 1–32

    Book  Google Scholar 

  8. R.A. Reed, M.A. Carts, P.W. Marshall et al., Heavy ion and proton-induced single event multiple upset. IEEE Trans. Nucl. Sci. 44, 2224–2229 (1997). https://doi.org/10.1109/23.659039

    Article  Google Scholar 

  9. D. Giot, P. Roche, G. Gasiot et al., Multiple-bit upset analysis in 90 nm SRAMs: heavy ions testing and 3D simulations. IEEE Trans. Nucl. Sci. 54, 904–911 (2007). https://doi.org/10.1109/TNS.2007.902360

    Article  Google Scholar 

  10. S. Boorboor, S.A.H. Feghhi, H. Jafari, Investigation of radial dose effect on single event upset cross-section due to heavy ions using GEANT4. Elsevier Radiat. Meas. 78, 42–47 (2015). https://doi.org/10.1016/j.radmeas.2014.10.001

    Article  Google Scholar 

  11. M.G. Pascale, T. Brian, D. Richard et al., Radiation effects in 3D integrated SOI SRAM circuits. IEEE Trans. Nucl. Sci. 58, 2845–2854 (2011). https://doi.org/10.1109/TNS.2011.2172463

    Article  Google Scholar 

  12. P. Li, W. Guo, Z. Zhao, et al., Impact of heavy ion species and energy on SEE characteristics of three-dimensional integrated circuit, in The 19th CCF Conference, Hefei, China, Oct 18–20 (2015), pp. 164–172. https://doi.org/10.1007/978-3-662-49283-3_16

  13. T.Q. Wang, L.Y. Xiao, M.X. Huo et al., Single-event upset prediction in SRAMs account for on-transistor sensitive volume. IEEE Trans. Nucl. Sci. 62, 3207–3215 (2015). https://doi.org/10.1109/TNS.2015.2480880

    Article  Google Scholar 

  14. R.A. Reed, R.A. Weller, M.H. Mendenhall et al., Impact of ion energy and species on single event effects analysis. IEEE Trans. Nucl. Sci. 54, 2312–2321 (2007). https://doi.org/10.1109/TNS.2007.909901

    Article  Google Scholar 

  15. T.D. Loveless, M.L. Alles, D.R. Ball et al., Parametric variability affecting 45 nm SOI SRAM single event upset cross-sections. IEEE Trans. Nucl. Sci. 57, 3228–3233 (2010). https://doi.org/10.1109/TNS.2010.2081688

    Article  Google Scholar 

  16. S. Priyadarshi, J.C. Hu, W.H. Choi, et al., Pathfinder 3D: a flow for system-level design space exploration, in The 2011 IEEE International 3D Systems Integration Conference (3DIC), Osaka, Japan, Jan 31–Feb 2 (2011), pp. 1–8. https://doi.org/10.1109/3dic.2012.6262961

  17. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  Google Scholar 

  18. A.W. Robert, H.M. Marcus, A.R. Robert et al., Monte Carlo simulation of single event effects. IEEE Trans. Nucl. Sci. 57, 1726–1746 (2010). https://doi.org/10.1109/TNS.2010.2044807

    Article  Google Scholar 

  19. F.Z. James, SRIM—the stopping and range of ions in matter. http://www.srim.org. Accessed 6 Dec 2016

  20. I. Eishi, T. Hitoshi, Y. Yasuo et al., Impact of scaling on neutron-induced soft error in SRAMs from a 250 to a 22 nm design rule. IEEE Trans. Electron. Devices 57, 1527–1538 (2010). https://doi.org/10.1109/TED.2010.2047907

    Article  Google Scholar 

  21. E. Mojtaba, A. Hossein, B. Rajendra et al., Layout-based modeling and mitigation of multiple event transients. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 367–379 (2016). https://doi.org/10.1109/TCAD.2015.2459053

    Article  Google Scholar 

  22. G. Gasiot, S. Uznanski, P. Roche, SEE test and modeling results on 45 nm SRAMs with different well strategies, in The 2009 IEEE International Reliability Physics Symposium, Anaheim, USA, May 2–6 (2010), pp. 407–410. https://doi.org/10.1109/irps.2010.5488794

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yi Xiao.

Additional information

This work was supported by the Fundamental Research Funds for the Central Universities (No. HIT.KISTP.201404), Harbin science and innovation research special fund (No. 2015RAXXJ003), and Special fund for development of Shenzhen strategic emerging industries (No. JCYJ20150625142543456).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, XB., Xiao, LY., Huo, MX. et al. Heavy ion-induced single event upset sensitivity evaluation of 3D integrated static random access memory. NUCL SCI TECH 29, 31 (2018). https://doi.org/10.1007/s41365-018-0377-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0377-1

Keywords

Navigation