Skip to main content
Log in

Measurement of keff by delayed neutron multiplication in subcritical systems

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this paper, we build on the concept of equivalent fundamental-mode source to propose using delayed neutrons as a neutron source in multiplication experiments to acquire the effective multiplication factor keff of subcritical systems, which is difficult to acquire directly from conventional neutron source multiplication method. We analyzed the difference between a fundamental-mode fission source and delayed neutron source, then adopted a factor to convert delayed neutron distribution to an equivalent fundamental-mode source distribution, and employed Monte Carlo code to acquire this factor. The delayed neutron multiplication measurement method was established for the first time, and corresponding experiments were conducted in subcritical systems. The multiplication of delayed neutrons was measured based on Chinese Fast Burst Reactor-II (CFBR-II) at subcritical states, and keff was acquired from delayed neutron multiplication successfully (0.9921 and 0.9969, respectively). The relative difference between keff obtained by the new method and previous values acquired by the positive period method is less than 1% for these two studied cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Y.Q. Shi, Q.F. Zhu, P. Xia et al., Neutron source multiplication method research in reactor physics experimen. Nucl. Sci. Eng. 25, 14–19 (2005). https://doi.org/10.3321/j.issn:0258-0918.2005.01.002 (in Chinese)

    Google Scholar 

  2. G. Truchet, W.F.G. van Rooijen, Y. Shimazu et al., Application of the modified neutron source multiplication method to the prototype FBR Monju. Ann. Nucl. Energy 51, 94–106 (2013). https://doi.org/10.1016/j.anucene.2012.07.040

    Article  Google Scholar 

  3. G.M. Sun, M.S. Cheng, Z.M. Dai, Preliminary analysis of fuel management for a small modular molten salt fast reactor. Nucl. Tech. 39, 070603 (2016). https://doi.org/10.11889/j.0253-3219.2016.hjs.39.070603. (in Chinese)

    Google Scholar 

  4. K. Yang, J.G. Chen, X.Z. Cai, Using the neutron balance method to access the feed fuel requirements for CANDLE. Nucl. Tech. 39, 060601 (2016). https://doi.org/10.11889/j.0253-3219.2016.hjs.39.060601. (in Chinese)

    Google Scholar 

  5. T. Endo, A. Yamamoto, Y. Yamane, Detected-neutron multiplication factor measured by neutron source multiplication method. Ann. Nucl. Energy 38, 2417–2427 (2011). https://doi.org/10.1016/j.anucene.2011.01.007

    Article  Google Scholar 

  6. B. Ye, L.N. Zeng, Y.P. Yin et al., Measurement of keff with an improved neutron source multiplication method based on numerical analysis. Nucl. Sci. Tech. 25, 020602 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.020602

    Google Scholar 

  7. H.W. Xiao, G.M. Liu, H. Yao et al., Influence of extended low power operation on neutronics parameters of CNP600. Nucl. Tech. 39, 110602 (2016). https://doi.org/10.11889/j.0253-3219.2016.hjs.39.110602. (in Chinese)

    Google Scholar 

  8. H. Shahbunder, C.H. Pyeon, T. Misawa et al., Experimental analysis for neutron multiplication by using reaction rate distribution in accelerator-driven system. Ann. Nucl. Energy 37, 592–597 (2010). https://doi.org/10.1016/j.anucene.2009.12.022

    Article  Google Scholar 

  9. H. Shahbunder, C.H. Pyeon, T. Misawa et al., Subcritical multiplication factor and source efficiency in accelerator-driven system. Ann. Nucl. Energy 37, 1214–1222 (2010). https://doi.org/10.1016/j.anucene.2010.04.010

    Article  Google Scholar 

  10. H. Shahbunder, C.H. Pyeon, T. Misawa et al., Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system. Ann. Nucl. Energy 37, 1785–1791 (2010). https://doi.org/10.1016/j.anucene.2010.07.003

    Article  Google Scholar 

  11. C.M. Persson, P. Seltborg, A. Ahlander et al., Analysis of reactivity determination methods in the subcritical experiment Yalina. Nucl. Instrum. Method A 554, 374–383 (2005). https://doi.org/10.1016/j.nima.2005.07.058

    Article  Google Scholar 

  12. C.M. Persson, A. Fokau, I. Serafimovich et al., Pulsed neutron source measurements in the subcritical ADS experiment YALINA-Booster. Ann. Nucl. Energy 35, 2357–2364 (2008). https://doi.org/10.1016/j.anucene.2008.07.011

    Article  Google Scholar 

  13. D.L. Chichester, M.T. Kinlaw, The MARVEL assembly for neutron multiplication. Appl. Radiat. Isot. 80, 42–48 (2013). https://doi.org/10.1016/j.apradiso.2013.05.012

    Article  Google Scholar 

  14. R. Soule, W. Assal, P. Chaussonnet et al., Neutronic studies in support of accelerator-driven systems: the MUSE experiments in the MASURCA facility. Nucl. Sci. Eng. 148, 124–152 (2004). https://doi.org/10.13182/NSE01-13C

    Article  Google Scholar 

  15. A. Billebaud, R. Brissot, C. LeBrun et al., Prompt multiplication factor measurements in subcritical systems: From MUSE experiment to a demonstration ADS. Prog. Nucl. Energy 49, 142–160 (2007). https://doi.org/10.1016/j.pnucene.2006.11.001

    Article  Google Scholar 

  16. G.D. Spriggs, R.D. Busch, T. Sakurai et al., The equivalent fundamental-mode source. Ann. Nucl. Energy 26, 237–264 (1999). https://doi.org/10.1016/S0306-4549(98)00048-614

    Article  Google Scholar 

  17. J.F. Du, X.Q. Fan, Calculation of effective coefficient of spontaneity fission neutron source in CFBR-II reactor. Nucl. Power Eng. 31, 131–133 (2010). https://doi.org/10.7538/yzk.2013.47.04.0619

    Google Scholar 

  18. Y.P. Yin, C. Zheng, P. Huang, Calculation of CFBR-II’s multiplication-reactivity conversion factor. Chin. J. Comput. Phys. 27, 799–804 (2010). https://doi.org/10.3969/j.issn.1001-246X.2010.06.002

    Google Scholar 

  19. C. Zheng, Q. Wang, M. Li et al., Measurement of total fission number by delayed neutron method for burst reactor. Atom. Energy. Sci. Technol. 41, 699–701 (2007). https://doi.org/10.3969/j.issn.1000-6931.2007.06.014. (in Chinese)

    Google Scholar 

  20. X-5 Monte Carlo Team Los Alamos National Laboratory, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987(2008)

  21. G.D. Spriggs, T. Sakurai, S. Okajima, Rossi-α and βeff measurements in a fast critical assembly. Prog. Nucl. Energy 35, 169–181 (1999). https://doi.org/10.1016/S0149-1970(99)00010-4

    Article  Google Scholar 

  22. D.E. Gremyachkin, V.M. Piksaikin, K.V. Mitrofanov et al., Verification of the evaluated fission product yields data from the neutron induced fission of 235U, 238U and 239Pu based on the delayed neutron characteristics. Prog. Nucl. Energy 83, 13–25 (2015). https://doi.org/10.1016/j.pnucene.2015.02.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Zheng.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11175164 and 91326109).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, B., Yang, CW. & Zheng, C. Measurement of keff by delayed neutron multiplication in subcritical systems. NUCL SCI TECH 29, 29 (2018). https://doi.org/10.1007/s41365-018-0355-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0355-7

Keywords

Navigation