Skip to main content
Log in

Strangeness to increase the density of finite nuclear systems in constraining the high-density nuclear equation of state

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

As the high-density nuclear equation of state (EOS) is not very well constrained, we suggest that the structural properties from the finite systems can be used to extract a more accurate constraint. By including the strangeness degrees of freedom, the hyperon or anti-kaon, the finite systems can then have a rather high-density core which is relevant to the nuclear EOS at high densities directly. It is found that the density dependence of the symmetry energy is sensitive to the properties of multi-\(\Lambda \) hypernuclei, while the high-density EOS of symmetric matter correlates sensitively to the properties of kaonic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. L.W. Chen, C.M. Ko, B.A. Li, Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models. Phys. Rev. C 76, 054316 (2007). https://doi.org/10.1103/PhysRevC.76.054316

    Article  Google Scholar 

  2. J.R. Stone, N.J. Stone, S.A. Moszkowski, Incompressibility in finite nuclei and nuclear matter. Phys. Rev. C 89, 044316 (2014). https://doi.org/10.1103/PhysRevC.89.044316

    Article  Google Scholar 

  3. M. Dutra, O. Lourenco, S.S. Avancini et al., Relativistic mean-field hadronic models under nuclear matter constraints. Phys. Rev. C 90, 055203 (2014). https://doi.org/10.1103/PhysRevC.90.055203

    Article  Google Scholar 

  4. B.A. Li, B.J. Cai, L.W. Chen et al., Isospin dependence of nucleon effective masses in neutron-rich matter. Nucl. Sci. Tech. 27, 141 (2016). https://doi.org/10.1007/s41365-016-0140-4

    Article  Google Scholar 

  5. B.A. Li, L.W. Chen, C.M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rept. 464, 113–281 (2008). https://doi.org/10.1016/j.physrep.2008.04.005

    Article  Google Scholar 

  6. P. Danielewicz, R. Lacey, W.G. Lynch, Determination of the equation of state of dense matter. Science 298, 1592–1596 (2002). https://doi.org/10.1126/science.1078070

    Article  Google Scholar 

  7. C. Hartnack, H. Oeschler, Y. Leifels et al., Strangeness production close to threshold in proton-nucleus and heavy-ion collisions. Phys. Rep. 510, 119–200 (2012). https://doi.org/10.1016/j.physrep.2011.08.004

    Article  Google Scholar 

  8. S. Kumar, Y.G. Ma, Understanding the symmetry energy using data from the ALADIN-2000 collaboration taken at the GSI large neutron detector. Phys. Rev. C 86, 051601(R) (2012). https://doi.org/10.1103/PhysRevC.86.051601

    Article  Google Scholar 

  9. S.N. Wei, W.Z. Jiang, R.Y. Yang et al., Symmetry energy and neutron star properties in the saturated Nambu–Jona-Lasinio model. Phys. Lett. B 763, 145–150 (2016). https://doi.org/10.1016/j.physletb.2016.10.019

    Article  MATH  Google Scholar 

  10. J. Schaffner, C.B. Dover, A. Gal et al., Multiply strange nuclear systems. Ann. Phys. (N Y) 235, 35–76 (1994). https://doi.org/10.1006/aphy.1994.1090

    Article  Google Scholar 

  11. G.Q. Li, C.H. Lee, G.E. Brown, Kaon production in heavy ion collisions and maximum mass of neutron stars. Phys. Rev. Lett. 79, 5214–5217 (1997). https://doi.org/10.1103/PhysRevLett.79.5214

    Article  Google Scholar 

  12. W. Cassing, E.L. Bratkovskaya, Hadronic and electromagnetic probes of hot and dense nuclear matter. Phys. Rep. 308, 65–233 (1999). https://doi.org/10.1016/S0370-1573(98)00028-3

    Article  Google Scholar 

  13. Z.Q. Feng, W.J. Xie, G.M. Jin, Nuclear in-medium effects of strange particles in proton-nucleus collisions. Phys. Rev. C 90, 064604 (2014). https://doi.org/10.1103/PhysRevC.90.064604

    Article  Google Scholar 

  14. R.Y. Yang, W.Z. Jiang, D.R. Zhang, et al., Novel halos in light kaonic nuclei as an indicator of nuclear equation of state at supra-normal densities. arXiv:1605.04754

  15. W.Z. Jiang, Apparent softening of the symmetry energy with the inclusion of non-nucleonic components in nuclear matter. Nucl. Sci. Tech. 24, 050507 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.05.007

    Google Scholar 

  16. W.Z. Jiang, Roles of isoscalar hyperons in probing the density dependence of the nuclear symmetry energy. Phys. Lett. B 642, 28–34 (2006). https://doi.org/10.1016/j.physletb.2006.09.020

    Article  Google Scholar 

  17. R.Y. Yang, W.Z. Jiang, D.R. Zhang et al., Relativistic symmetry breaking in light kaonic nuclei. Eur. Phys. J A 50, 188 (2014). https://doi.org/10.1140/epja/i2014-14188-4

    Article  Google Scholar 

  18. G.A. Lalazissis, J. Konig, P. Ring, New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 55, 540–543 (1997). https://doi.org/10.1103/PhysRevC.55.540

    Article  Google Scholar 

  19. C.J. Horowitz, J. Piekarewicz, Neutron star structure and the neutron radius of 208Pb. Phys. Rev. Lett. 86, 5647–5650 (2001). https://doi.org/10.1103/PhysRevLett.86.5647

    Article  Google Scholar 

  20. D. Ii, E. Javorsek, D. Fischbach, Elmore. Experimental constraints on strangelets and other exotic nuclear matter. Phys. Rev. D 67, 034015 (2003). https://doi.org/10.1103/PhysRevD.67.034015

    Article  Google Scholar 

  21. X.H. Zhong, G.X. Peng, L. Li et al., Properties of kaonic nuclei in relativistic mean-field theory. Phys. Rev. C 74, 034321 (2006). https://doi.org/10.1103/PhysRevC.74.034321

    Article  Google Scholar 

  22. D. Gazda, E. Friedman, A. Gal et al., Dynamics of anti-K and multi-anti-K nuclei. Phys. Rev. C 76, 055204 (2007). https://doi.org/10.1103/PhysRevC.76.055204

    Article  Google Scholar 

  23. R.L. Xu, C. Wu, W.L. Qian et al., Dynamics of kaonic nuclei in an improved quark mass density-dependent model. Eur. Phys. J A 51, 20 (2015). https://doi.org/10.1140/epja/i2015-15020-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Zhou Jiang.

Additional information

Dedicated to Joseph B. Natowitz in honour of his 80th birthday.

This work was supported by the National Natural Science Foundation of China (Nos. 11275048, 11775049) and the China Jiangsu Provincial Natural Science Foundation (No. BK20131286).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, WZ., Yang, RY. & Wei, SN. Strangeness to increase the density of finite nuclear systems in constraining the high-density nuclear equation of state. NUCL SCI TECH 28, 180 (2017). https://doi.org/10.1007/s41365-017-0333-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0333-5

Keywords

Navigation