Skip to main content
Log in

Combining Monte Carlo simulations and dosimetry measurements for process control in the Tunisian Cobalt-60 irradiator after three half lives of the source

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

To check the dose uniformity and to determine the efficiency of medical devices sterilization by gamma irradiation after three half lives of the source, calculations of the absorbed dose were carried out. Monte Carlo simulations and dosimetry measurements, were established to study the radiation processing quality control. An isodose chart was created by GEANT4 Monte Carlo code to evaluate the absorbed dose rate uniformity inside the irradiation room from the year of the installation until the year of the source reload. The dose uniformity ratio (DUR) is deduced from maximum and minimum experimental doses in medical devices after three half lives of the source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. IAEA-DGPF/CD, Directory of Gamma Processing Facilities in Member States, A technical document issued by the International Atomic Energy Agency (2004). http://www-pub.iaea.org/MTCD/publications/PDF/dgpf-cd/PDF/Contents.pdf. Accessed 14 Feb 2016

  2. K. Farah, T. Jerbi, F. Kuntz et al., Dose measurements for characterization of semi-industrial 60Co gamma irradiation facility. Radiat. Meas. 41, 201–208 (2006). doi:10.1016/j.radmeas.2005.03.003

    Article  Google Scholar 

  3. F. Gharbi, O. Kadri, K. Farah et al., Validation of GEANT4 code of CERN a predictive tool of dose rate measurement in the Tunisian gamma irradiation facility. Radiat. Phys. Chem. 74, 102–110 (2005). doi:10.1016/j.radphyschem.2005.02.006

    Article  Google Scholar 

  4. O. Kadri, F. Gharbi, K. Farah, Monte Carlo improvement of dose uniformity in gamma irradiation processing using the GEANT4 code. Nucl. Instrum. Methods B 239, 391–398 (2005). doi:10.1016/j.nimb.2005.05.052

    Article  Google Scholar 

  5. O. Kadri, F. Gharbi, A. Trabelsi, Monte Carlo optimization of some parameters in gamma irradiation processing. Nucl. Instrum. Methods B 245, 459–463 (2006). doi:10.1016/j.nimb.2005.11.142

    Article  Google Scholar 

  6. IAEA-TECDOC-539, Guidelines for industrial radiation sterilization of disposable medical product. A technical document issued by the international Atomic Energy Agency (1990). http://www-pub.iaea.org/MTCD/publications/PDF/te_539_web.pdf. Accessed 14 Feb 2016

  7. ISO 11137-1, Sterilization of health care products—radiation—part 1: requirements for development, validation and routine control of a sterilization process for medical devices (2006)

  8. ISO 11137-2, Sterilization of health care products—radiation—part 2: establishing the sterilization dose (2013)

  9. ISO 11137-3, Sterilization of health care products—radiation—part 3: guidance on dosimetric aspects (2006)

  10. O. Kadri, F. Gharbi, K. Farah et al., Application of GEANT4 code in gamma irradiation processing. Int. J. Theor. Phys. 14, 1–15 (2009)

    Google Scholar 

  11. W.L. McLaughlin, M.F. Desrosiers, Dosimetry systems for radiation processing. Radiat. Phys. Chem. 46, 1163–1174 (1995)

    Article  Google Scholar 

  12. ISO/ASTM 51276, Standard practice for use polymethyl methacrylate dosimetry system. American Society for Testing and Materials, Philadelphia (2002)

  13. F. Kuntz, R. Fung, A. Strasser, A dedicated tool for the quality assurance in the field of radiation processing. Proceeding of the 11th International Meeting on Radiation Processing, Melbourne (Australia) (1999)

  14. ISO/ASTM 51707, Standard guide for estimating uncertainties in dosimetry for radiation processing. ftp://185.72.26.245/Astm/2/01/Section%2012/ASTM1202/PDF/ISOASTM51707.pdf

  15. S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Method A 506(3), 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  16. J. Allison, K. Amako, J. Apostolakis et al., GEANT4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006). doi:10.1109/TNS.2006.869826

    Article  Google Scholar 

  17. O. Kadri, F. Gharbi, K. Farah et al., Monte Carlo studies of the Tunisian gamma irradiation facility using GEANT4 code. Appl. Radiat. Isotopes 64, 170–177 (2006). doi:10.1016/j.apradiso.2005.07.009

    Article  Google Scholar 

  18. E.G. Cabal, L.G. Lanuza, H.M. Solomon, Process control and dosimetry in a multipurpose irradiation facility. Radiat. Phys. Chem. 55, 781–784 (1999)

    Article  Google Scholar 

  19. A. Mejri, K. Farah, F. Hosni et al., An empirical model for predicting Harwell dose variation during gamma process interruption using experimental design. MAPAN-J. Metrol. Soc. India 30(2), 85–90 (2015). doi:10.1007/s12647-014-0129-6

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge all the staff of the Ionizing Radiation Unit for their availability and support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Ounalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ounalli, L., Bhar, M., Mejri, A. et al. Combining Monte Carlo simulations and dosimetry measurements for process control in the Tunisian Cobalt-60 irradiator after three half lives of the source. NUCL SCI TECH 28, 133 (2017). https://doi.org/10.1007/s41365-017-0289-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0289-5

Keywords

Navigation