Skip to main content
Log in

Measurements of momentum correlation and interaction parameters between antiprotons

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The two-particle momentum correlation is influenced by the nuclear force between two particles, which has been intensively studied for nucleons and nuclei, but not much for antinucleons or antinuclei. In this proceeding, we present our STAR measurements on momentum correlation function of antiproton–antiproton and proton–proton in Au+Au collisions at \(\sqrt{s_\mathrm{NN}}\) = 200 GeV at the Relativistic Heavy Ion Collider. Attractive nuclear force between two antiprotons is demonstrated, and the strong interaction parameters (the scattering length and the effective range) are determined. This measurement serves as an additional verification of CPT symmetry. The present information on the strong force in the antiproton–antiproton system provides a fundamental ingredient towards understanding the structure of more sophisticated antinuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.V. Reid, Local phenomenological nucleon-nucleon potentials. Ann. Phys. 50, 411–448 (1968). doi:10.1016/0003-4916(68)90126-7

    Article  Google Scholar 

  2. R. Machleidt, I. Slaus, J. Phys. G. The nucleon–nucleon interaction 27, R 69 (2001). doi:10.1088/0954-3899/27/5/201

    Google Scholar 

  3. A.B. Larionov, Antiproton-nucleus reactions at intermediate energies. Nucl. Sci. Tech. 26, S20506 (2015). doi:10.13538/j.1001-8042/nst.26.S20506

    Google Scholar 

  4. Z.Q. Feng, Nuclear dynamics induced by antiprotons. Nucl. Sci. Tech. 26, S20512 (2015). doi:10.13538/j.1001-8042/nst.26.S2051

    Google Scholar 

  5. C.M. Ko, L.W. Chen, V. Greco et al., Mean-field effects on matter and antimatter elliptic flow. Nucl. Sci. Tech. 24, 050525 (2013). doi:10.13538/j.1001-8042/nst.2013.05.025

    Google Scholar 

  6. Y.G. Ma, J.H. Chen, L. Xue, A brief review of antimatter production. Front. Phys. 7, 637 (2012). doi:10.1007/s11467-012-0273-9

    Article  Google Scholar 

  7. Y.G. Ma, J.H. Chen, L. Xue et al., Hunting antimatter nuclei in ultrarelativistic heavy-ion collisions. Nucl. Phys. News 23(1), 10–14 (2013). doi:10.1080/10619127.2012.738164

    Article  Google Scholar 

  8. Y.G. Ma, Detecting the anti-hypertriton and anti-helium-4 from the RHIC. EPJ Web Conf. 66, 04020 (2014). doi:10.1051/epjconf/20146604020

    Article  Google Scholar 

  9. J.H. Chen, for the STAR Collaboration, Observation of hypertritons in Au+Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV. Nucl. Phys. A 830, 761c–764c (2009). doi:10.1016/j.nuclphysa.2009.10.001

    Article  Google Scholar 

  10. B.I. Abelev, STAR Collaboration, et al., Observation of an antimatter hypernucleus. Science 328, 58 (2010). doi:10.1126/science.1183980

    Article  Google Scholar 

  11. H. Agakishiev, STAR Collaboration, et al., Observation of the antimatter helium-4 nucleus. Nature 473, 353–356 (2011). doi:10.1038/nature10079

  12. L. Xue, for the STAR Collaboration, Observation of the antimatter helium-4 nucleus at the RHIC. J. Phys. G: Nucl. Part. Phys. 38, 124072 (2011). doi:10.1088/0954-3899/38/12/124072

    Article  Google Scholar 

  13. J. Adam, ALICE Collaboration, Precision measurement of the mass difference between light nuclei and anti-nuclei. Nat. Phys. 11, 811–814 (2015). doi:10.1038/NPHYS3432

    Article  Google Scholar 

  14. S. Ulmer et al., High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524, 196–198 (2015). doi:10.1038/nature14861

    Article  Google Scholar 

  15. K.A. Olive, Particle Data Group, et al., Review of particle physics. Chin. Phys. C 38, 090001–091676 (2014). doi:10.1088/1674-1137/38/9/090001

  16. J. Adams, M.M. Aggarwal, Z. Ahammed et al., Experimental and theoretical challenges in the search for the quark–gluon plasma: The STAR Collaborationś critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). doi:10.1016/j.nuclphysa.2005.03.085

    Article  Google Scholar 

  17. K. Adcox, S.S. Adler, S. Afanasiev et al., Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005). doi:10.1016/j.nuclphysa.2005.03.086

    Article  Google Scholar 

  18. Y.G. Ma, Frontier of high-energy nuclear physics: exploring the quark–gluon plasma. Mod. Phys. 25(5), 27–34 (2013) (in Chinese)

    Google Scholar 

  19. R. Hanbury-Brown, R.Q. Twiss, A new type of interferometer for use in radio astronomy. Philos. Mag. 45, 663–682 (1954). doi:10.1080/14786440708520475

    Article  Google Scholar 

  20. G.I. Kopylov, Like particle correlations as a tool to study the multiple production mechanism. Phys. Lett. B 50, 472–474 (1974). doi:10.1016/0370-2693(74)90263-9

    Article  Google Scholar 

  21. G.I. Kopylov, M.I. Podgoretsky, Interference of two-particle states in elementary-particle physics and astronomy. Sov. Phys. JETP 42, 211–214 (1975)

    Google Scholar 

  22. M.I. Podgoretsky, Interference correlations of identical pions. Sov. J. Part. Nucl. Theory 20, 266–282 (1989)

    Google Scholar 

  23. M. Schellekens et al., Hanbury Brown Twiss effect for ultracold quantum gases. Science 310, 648–651 (2005). doi:10.1126/science.1118024

    Article  Google Scholar 

  24. H. Kiesel, A. Renz, F. Hasselbach, Observation of Hanbury-Brown Twiss anticorrelations for free electrons. Nature 418, 392–394 (2002). doi:10.1038/nature00911

    Article  Google Scholar 

  25. T. Rom et al., Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice. Nature 444, 733–736 (2006). doi:10.1038/nature05319

    Article  Google Scholar 

  26. G. Goldhaber, S. Goldhaber, W. Lee, A. Pais, Influence of Bose–Einstein statistics on the antiproton–proton annihilation process. Phys. Rev. 120, 300–312 (1960). doi:10.1103/PhysRev.120.300

    Article  MathSciNet  Google Scholar 

  27. M. Gyulassy, S.K. Kauffmann, L.W. Wilson, Pion interferometry of nuclear collisions. 1. Theory. Phys. Rev. C 20, 2267–2292 (1979). doi:10.1103/PhysRevC.20.2267

    Article  Google Scholar 

  28. H.D. Boal, C.K. Gelbke, B.K. Jennings, Intensity interferometry in subatomic physics. Rev. Mod. Phys. 62(3), 553–602 (1990). doi:10.1103/RevModPhys.62.553

    Article  Google Scholar 

  29. R. Lednický, Correlation femtoscopy of multiparticle processes. Phys. At. Nucl. 67, 72–82 (2004). doi:10.1134/1.1644010

    Article  Google Scholar 

  30. W.G. Lynch et al., Formation and decay of a localized region of high excitation in heavy-ion-induced reactions. Phys. Rev. Lett. 51, 1850 (1983). doi:10.1103/PhysRevLett.51.1850

    Article  Google Scholar 

  31. Y.G. Ma et al., Surveying the nucleon-nucleon momentum correlation function in the framework of quantum molecular dynamics model. Phys. Rev. C 73, 014604 (2006). doi:10.1103/PhysRevC.73.014604

    Article  Google Scholar 

  32. Y.G. Ma et al., Nucleon-nucleon momentum correlation function for light nuclei. Nucl. Phys. A 790, 299c (2007). doi:10.1016/j.nuclphysa.2007.03.146

    Article  Google Scholar 

  33. M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Femtoscopy in relativistic heavy ion collisions: two decades of progress. Ann. Rev. Nucl. Part. Sci. 55, 357–402 (2005). doi:10.1146/annurev.nucl.55.090704.151533

    Article  Google Scholar 

  34. Y.G. Ma, D.Q. Fang, X.Y. Sun et al., Different mechanism of two-proton emission from proton-rich nuclei \(^{23}\text{Al }\) and \(^{22}\text{Mg}\). Phys. Lett. B 743, 306 (2015). doi:10.1016/j.physletb.2015.02.066

    Article  Google Scholar 

  35. D.Q. Fang, Y.G. Ma, X.Y. Sun et al., Proton-proton correlations in distinguishing the two-proton emission mechanism of \(^{23}\text{Al}\) and \(^{22}\text{Mg}\). Phys. Rev. C 94, 044621 (2016). doi:10.1103/PhysRevC.94.044621

  36. S.E. Koonin, Proton pictures of high-energy nuclear collisions. Phys. Lett. B 70, 43–47 (1977). doi:10.1016/0370-2693(77)90340-9

    Article  Google Scholar 

  37. L. Rednický, V.L. Lyuboshitz, Influence of final-state interaction on correlations of two particles with nearly equal momenta. Sov. J. Nucl. Phys. 35, 770–788 (1982)

    Google Scholar 

  38. R. Lednický, Notes on correlation femtoscopy. Phys. At. Nucl. 71, 1572–1578 (2008). doi:10.1134/S1063778808090123

    Article  Google Scholar 

  39. J. Adams, STAR Collaboration, et al., Proton-\(\Lambda \) correlations in central Au+Au collisions at \(\sqrt{s_{\rm NN}}\) = 200 GeV. Phys. Rev. C 74, 064906 (2006). doi:10.1103/PhysRevC.74.064906

    Article  Google Scholar 

  40. L. Adamczyk, STAR Collaboration, et al., \(\Lambda -\Lambda \) correlation function in Au+Au collisions at \(\sqrt{s_{\rm NN}}\) = 200 GeV. Phys. Rev. Lett. 114, 022301 (2015). doi:10.1103/PhysRevC.74.064906

    Article  Google Scholar 

  41. M. Anderson et al., The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods Phys. Res. A 499, 659–678 (2003). doi:10.1016/S0168-9002(02)01964-2

    Article  Google Scholar 

  42. W.J. Llope, for the STAR Collaboration, Multigap RPCs in the STAR experiment at RHIC. Nucl. Instrum. Methods Phys. Res. A 661, s110–s113 (2012). doi:10.1016/j.nima.2010.07.086

    Article  Google Scholar 

  43. Y.-F. Xu, J.-H. Chen, Y.-G. Ma, A.-H. Tang, Z.-B. Xu, Y.-H. Zhu, Physics performance of the STAR zero degree calorimeter at relativistic heavy ion collider. Nucl. Sci. Tech. 27, 126 (2016). doi:10.1007/s41365-016-0129-z

  44. H. Zbroszczyk, Studies of baryon-baryon correlations in relativistic nuclear collisions registered at the STAR experiment. Ph. D Thesis, Warsaw University of Technology (2008)

  45. M. Chojnacki, A. Kisiel, W. Florkowski, W. Broniowski, THERMINATOR 2: THERMal heavy IoN generATOR 2. Comput. Phys. Commun. 183, 746–773 (2012). doi:10.1016/j.cpc.2011.11.018

    Article  Google Scholar 

  46. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nauka, Moscow, 1974)

    MATH  Google Scholar 

  47. B. Erazmus et al., Influence of the emitting nucleus on the light-particle correlation function. Nucl. Phys. A 583, 395–400 (1995). doi:10.1016/0375-9474(94)00693-H

    Article  Google Scholar 

  48. R. Lednický, Finite-size effect on two-particle production in continuous and discrete spectrum. Phys. Part. Nucl. 40, 307–352 (2009). doi:10.1134/S1063779609030034

    Article  Google Scholar 

  49. L. Mathelitsch, B.J. VerWest, Effective range parameters in nucleon-nucleon scattering. Phys. Rev. C 29, 739–745 (1984). doi:10.1103/PhysRevC.29.739

    Article  Google Scholar 

  50. I. Šlaus, Y. Akaishi, H. Tanaka, Neutron-neutron effective range parameters. Phys. Rep. 173, 257–300 (1989). doi:10.1016/0370-1573(89)90127-0

    Article  Google Scholar 

  51. L. Adamczyk, STAR Collaboration, et al., Measurement of interaction between antiprotons. Nature 527, 345–348 (2015). doi:10.1038/nature15724

  52. N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions (Oxford University Press, Oxford, 1965)

    MATH  Google Scholar 

  53. J. Adam, ALICE Collaboration, et al., One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at \(\sqrt{s_{\rm NN}}\) = 2.76 TeV. Phys. Rev. C 92, 054908 (2015). doi:10.1103/PhysRevC.92.054908

Download references

Acknowledgments

We thank the whole collaborators of the STAR collaboration, especially for Dr. Ai-Hong Tang of BNL, the RHIC Operations Group, the Collider-Accelerator Department, and the RHIC Computing Facility at BNL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Gang Ma.

Additional information

This work was supported in part by the National Natural Science Foundation of China (No. 11421505) and the Major State Basic Research Development Program in China (No. 2014CB845401).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZQ., Ma, YG. Measurements of momentum correlation and interaction parameters between antiprotons. NUCL SCI TECH 27, 152 (2016). https://doi.org/10.1007/s41365-016-0147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0147-x

Keywords

Navigation