Skip to main content

Advertisement

Log in

Extraction of full energy peak of 137Cs from in situ NaI (Tl) gamma-ray spectrum

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A Levenberg–Marquardt Gaussian fitting algorithm has been used for analyzing the overlap of three peaks (the 583-keV peak of 208Tl, the 609-keV peak of 214Bi, and the 662-keV peak of 137Cs) using an in situ NaI (Tl) scintillation spectrometer. The algorithm, in addition, was compared with a genetic algorithm used for multiple deconvolution. The three fitted peak areas (583, 609, and 662 keV) were calculated from the measured gamma-ray spectra obtained from a simulation experiment in which a 137Cs source was buried at different soil depths (from 18 to 38 cm). The application of the Levenberg–Marquardt algorithm yielded similar results compared to the genetic algorithm. A lack-of-fit test showed that the fitting is good when the instrumental noise levels were estimated from replicated analyses. The relative fitting error of the total net area and the residual standard deviation were within 5 % and 0.04, respectively, and the goodness of the fitting was better than 0.98. While the methods used in this paper give high performance, the results may lead to incorrect estimation when the signal-to-noise ratio is smaller than −30 dB. This study is useful for the determination of radioactive specific activity of 137Cs by in situ spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. Steinhauser, A. Brandl, T.E. Johnson, Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci. Total Environ. 470–471, 800–817 (2014). doi:10.1016/j.scitotenv.2013.10.029

    Article  Google Scholar 

  2. J. Saegusa, Y. Kikuta, H. Akino, Observation of gamma-rays from fallout collected at Ibaraki, Japan, during the Fukushima nuclear accident. Appl. Radiat. Isot. 77, 56–60 (2013). doi:10.1016/j.apradiso.2013.02.018

    Article  Google Scholar 

  3. T. Yamada, H. Ishizu, Y. Kawada, A simple method for activity determination of 134Cs and 137Cs in foodstuffs using NaI(Tl) scintillation spectrometer. Appl. Radiat. Isot. 81, 353–355 (2013). doi:10.1016/j.apradiso.2013.03.048

    Article  Google Scholar 

  4. T. Yamada, N. Takano, Doublet peak area determination in NaI(Tl) scintillation spectrometry using maximum likelihood estimation. Appl. Radiat. Isot. 87, 407–409 (2014). doi:10.1016/j.apradiso.2013.11.069

    Article  Google Scholar 

  5. L. Wang, L.S. Xu, S.T. Feng et al., Multi-Gaussian fitting for pulse waveform using Weighted Least Squares and multi-criteria decision making method. Comput. Biol. Med. 43, 1661–1672 (2013). doi:10.1016/j.compbiomed.2013.08.004

    Article  Google Scholar 

  6. L. Guillot, Extraction of full absorption peaks in airborne gamma-spectrometry by filtering techniques coupled with a study of the derivatives. Comparison with the window method. J. Environ. Radioact. 53, 381–398 (2001). doi:10.1016/S0265-931X(00)00144-2

    Article  Google Scholar 

  7. M. Garcia-Talavera, B. Ulicny, A genetic algorithm approach for multiplet deconvolution in γ-ray spectra. Nucl. Instrum. Methods Phys. Res. Sect. A 3, 585–594 (2003). doi:10.1016/S0168-9002(03)02052-7

    Article  Google Scholar 

  8. M. Parente, H.D. Makarewicz, J.L. Bishop, Decomposition of mineral absorption bands using nonlinear least squares curve fitting: application to Martian meteorites and CRISM data. Planet. Space Sci. 59, 423–442 (2011). doi:10.1016/j.pss.2011.01.009

    Article  Google Scholar 

  9. R.B. Singer, Near-infrared spectral reflectance of mineral mixtures: systematic combinations of pyroxenes, olivine, and iron oxides. J. Geophys. Res. 86, 7967–7982 (1981). doi:10.1029/JB086iB09p07967

    Article  Google Scholar 

  10. A.J. Brown, Spectral curve fitting for automatic hyperspectral data analysis. IEEE Trans. Geosci. Remote 44, 1601–1608 (2006). doi:10.1109/TGRS.2006.870435

    Article  Google Scholar 

  11. M. Miyamoto, T. Arai, M. Komatsu et al., Evaluation of a curve-fitting method for diffuse reflectance spectra in the UV–visible–NIR wavelength region. Polar Sci. 3, 110–116 (2009). doi:10.1016/j.polar.2009.06.004

    Article  Google Scholar 

  12. J.M. Sunshine, C.M. Pieters, S.F. Pratt, Deconvolution of mineral absorption bands: an improved approach. J. Geophys. Res. 95, 6955–6966 (1990). doi:10.1029/JB095iB05p06955

    Article  Google Scholar 

  13. C. Fu, N.P. Wang, Gaussian fitting in gamma-ray spectral decomposition. Nucl. Sci. Tech. 21, 214–217 (2010)

    Google Scholar 

  14. H.Q. Huang, Q. Shao, W.C. Ding et al., Simulation of gamma spectrum-shifting based on the parameter adjustment of Gaussian function space. Nucl. Sci. Tech. 24, 060405 (2013). doi:10.13538/j.1001-8042/nst.2013.06.009

    Google Scholar 

  15. P.R. Gill, W. Murray, M.H. Wright, The Levenberg–Marquardt Method. Practical Optimization (Academic Press, London, 1981)

    Google Scholar 

  16. H. Dan, N. Yamashita, M. Fukushima, Convergence properties of the inexact Levenberg–Marquardt method under local error bound conditions. Optim. Methods Softw. 17, 605–626 (2002). doi:10.1080/1055678021000049345

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Behling, A. Fischer, M. Herrich et al., A Levenberg–Marquardt method with approximate projections. Comput. Optim. Appl. 59, 5–26 (2013). doi:10.1007/s10589-013-9573-4

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Ling, G.F. Wang, H.J. He, A new Levenberg–Marquardt type algorithm for solving nonsmooth constrained equations. Appl. Math. Comput. 229, 107–122 (2014). doi:10.1016/j.amc.2013.12.015

    MathSciNet  Google Scholar 

  19. Y.D. He, C.F. Ma, B. Fan, A corrected Levenberg–Marquardt algorithm with a nonmonotone line search for the system of nonlinear equations. Appl. Math. Comput. 260, 159–169 (2015). doi:10.1016/j.amc.2015.03.076

    MathSciNet  Google Scholar 

  20. Y. Xiao, A higher-order Levenberg–Marquardt method for nonlinear equations. Appl. Math. Comput. 219, 10682–10694 (2013). doi:10.1016/j.amc.2013.04.033

    MathSciNet  MATH  Google Scholar 

  21. K. Amini, F. Rostami, A modified two steps Levenberg–Marquardt method for nonlinear equations. J. Comput. Appl. Math. 288, 341–350 (2015). doi:10.1016/j.cam.2015.04.040

    Article  MathSciNet  MATH  Google Scholar 

  22. C.G. Ryan, E. Clayton, W.L. Griffin et al., SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl. Instrum. Methods Phys. Res. Sect. B 34, 396–402 (1988). doi:10.1016/0168-583X(88)90063-8

    Article  Google Scholar 

  23. N.P. Wang, L. Xiao, C.P. Li et al., Determination of Radioactivity Level of 238U, 232Th and 40K in surface medium in Zhuhai City by in situ gamma-ray spectrometry. J. Nucl. Sci. Technol. 42, 888–896 (2005). doi:10.1080/18811248.2005.9711040

    Article  Google Scholar 

  24. J. Neter, M.H. Kutner, C.J. Nachtsheim et al., Applied Linear Statistical Models (McGraw-Hill/Irwin, Chicago, 1996), pp. 121–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Ping Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 41474107).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LL., Wang, NP. & Li, BC. Extraction of full energy peak of 137Cs from in situ NaI (Tl) gamma-ray spectrum. NUCL SCI TECH 27, 84 (2016). https://doi.org/10.1007/s41365-016-0090-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0090-x

Keywords

Navigation