Skip to main content

Advertisement

Log in

An inversion decomposition method for better energy resolution of NaI(Tl) scintillation detectors based on a Gaussian response matrix

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

NaI(Tl) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price. However, the mitigation of the limited energy resolution of these detectors, which detracts from an accurate analysis of the instrument spectra obtained, remains a crucial need. Based on the physical properties and spectrum formation processes of NaI(Tl) scintillation detectors, the detector response to gamma photons with different energies is represented by photopeaks that are approximately Gaussian in shape with unique full-width-at-half-maximum (FWHM) values. The FWHM is established as a detector parameter based on resolution calibrations and is used in the construction of a general Gaussian response matrix, which is employed for the inverse decomposition of gamma spectra obtained from the detector. The Gold and Boosted Gold iterative algorithms are employed to accelerate the decomposition of the measured spectrum. Tests of the inverse decomposition method on multiple simulated overlapping peaks and on experimentally obtained U and Th radionuclide series spectra verify the practicability of the method, particularly in the low-energy region of the spectrum, providing for the accurate qualitative and quantitative analysis of radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.D. Milbrath, B.J. Choate, J.E. Fast et al., Comparison of LaBr 3: Ce and NAI(Tl) scintillators for radio-isotope identification devices. Nucl. Instrum. Methods A 572, 774–784 (2007). doi:10.1016/j.nima.2006.12.003

    Article  Google Scholar 

  2. X.M. Fang, L.I. Xin-Nian, Comparison of performances of NaI and HPGe detectors. J. Shanghai Univ Nat. Sci. Ed. 10, 389–392 (2004). doi:10.3969/j.issn.1007-2861.2004.04.013

    Google Scholar 

  3. A. Likar, T. Vidmar, A peak-search method based on spectrum convolution. J. Phys. D Appl. Phys. 36, 1903–1909 (2003). doi:10.1088/0022-3727/36/15/323

    Article  Google Scholar 

  4. M.H. Zhu, L.G. Liu, Q.I. Dong-Xu et al., Least square fitting of low resolution gamma ray spectra with cubic B-spline basis functions. Chin. Phys. C 33, 24–30 (2009). doi:10.1088/1674-1137/33/1/006

    Article  Google Scholar 

  5. M. Morhác, An algorithm for determination of peak regions and baseline elimination in spectroscopic data. Nucl. Instrum. Methods A 600, 478–487 (2009). doi:10.1016/j.nima.2008.11.132

    Article  Google Scholar 

  6. J.F. Pang, Gamma Energy Spectrum Analysis (Shanxi Science and Technology Press, Xi’an, 1993), pp. 350–716

    Google Scholar 

  7. J.F. He, Q.F. Wu, J.P. Cheng et al., An Inversion Decomposition Test Based on Monte Carlo Response Matrix on the Gamma Ray Spectra from NaI(Tl) Scintillation Detector, in Journal of Nuclear Science and Technology, ed. by L.H. Sun (Springer, Singapore, 2016)

    Google Scholar 

  8. B. Tang, L.Q. Ge, F. Fang et al., The Principle of Measurement on Nuclear Radiation (Harbin Engineering University Press, Harbin, 2010), pp. 161–215

    Google Scholar 

  9. Gordon R. Gilmore, Practical Gamma-ray Spectrometry, 2nd edn. (Nuclear Training Services Ltd, Warrington, 2008). doi:10.1002/9780470861981

    Book  Google Scholar 

  10. R.P. Gardner, X. Ai, C.R. Peeples et al., Use of an iterative convolution approach for qualitative and quantitative peak analysis in low resolution gamma-ray spectra. Nucl. Instrum. Methods A 652, 544–549 (2011). doi:10.1016/j.nima.2010.12.224

    Article  Google Scholar 

  11. M.S. Rahman, G. Cho, Unfolding low-energy gamma-ray spectrum obtained with NaI(Tl) in air using matrix inversion method. J. Sci. Res. 2, 221–226 (2010). doi:10.3329/jsr.v2i2.4372

    Google Scholar 

  12. M. Morhác, V. Matoušek, Complete positive deconvolution of spectrometric data. Digit. Signal Process. 19, 372–392 (2009). doi:10.1016/j.dsp.2008.06.002

    Article  Google Scholar 

  13. J.L. Zheng, Q.X. Ying, W.L. Yang, Signals and Systems (Higher Education Press, Beijing, 2011), pp. 28–130

    Google Scholar 

  14. M.S. Rahman, G. Cho, B.S. Kang, Deconvolution of gamma-ray spectra obtained with NaI(Tl) detector in a water tank. Radiat. Prot. Dosim. 135, 203–210 (2009). doi:10.1093/rpd/ncp102

    Article  Google Scholar 

  15. R.L. Heath, Scintillation Spectrometry Gamma-Ray Spectrum Catalogue, vol. 1(Rev), 2nd edn. (γ-Ray Spectrometry Center Idaho National Engineering and Environmental Laboratory, Idaho, 1997). doi:10.2172/4033555

    Google Scholar 

  16. Y. Wang, Y. Wei, Implicit FWHM calibration for gamma-ray spectra. J. Nucl. Sci. Technol. 24(020403–297), 2013 (2013). doi:10.13538/j.1001-8042/nst.02.005

    Google Scholar 

  17. R. Gold, in An Iterative Unfolding Method for Response Matrices, vol. III. AEC Research and Development Report ANL-6984. Argonne National Laboratories, Argo. (1964). doi: 10.2172/4634295

  18. S. Wachtmeister, S. Csillag, Implementation of gold deconvolution for enhanced energy resolution in EEL spectra. Ultramicroscopy 111, 79–89 (2011). doi:10.1016/j.ultramic.2010.10.006

    Article  Google Scholar 

  19. P. Bandzuch, M. Morhac, J. Kristiak, Study of the Van Cittert and Gold iterative methods of deconvolution and their application in the deconvolution of experimental spectra of positron annihilation. Nucl. Instrum. Methods A 384, 506–515 (1997). doi:10.1016/S0168-9002(96)00874-1

    Article  Google Scholar 

  20. M. Guttormsen, T.S. Tveter, L. Bergholt et al., The unfolding of continuum γ-ray spectra. Nucl. Instrum. Methods A 374, 371–376 (1996). doi:10.1016/0168-9002(96)00197-0

    Article  Google Scholar 

  21. M. Miroslav, J. Klimanb, V. Matousek et al., Background elimination methods for multidimensional coincidence γ-ray spectra. Nucl. Instrum. Methods A 401, 113–132 (1997). doi:10.1016/S0168-9002(97)01023-1

    Article  Google Scholar 

  22. C. Xu, I. Aissaoui, S. Jacquey, Algebraic analysis of the Van Cittert iterative method of deconvolution with a general relaxation factor. J. Opt. Soc. Am. A 11, 2804–2808 (1994). doi:10.1364/JOSAA.11.002804

    Article  Google Scholar 

  23. M. Jandel, M. Morhac, J. Kliman et al., Decomposition of continuum γ-ray spectra using synthesized response matrix. Nucl. Instrum. Methods A 516, 172–183 (2004). doi:10.1016/j.nima.2003.07.047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Feng He.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11365001), National Major Scientific Equipment Development Projects (Grant No. 041514065), the Educational Commission of Jiangxi Province of China (Grant No. GJJ13464), Plan of Science and Technology of Jiangxi Province (Grant No. 20141BBE50024), and the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology (Grant No. RGET1316).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, JF., Yang, YZ., Qu, JH. et al. An inversion decomposition method for better energy resolution of NaI(Tl) scintillation detectors based on a Gaussian response matrix. NUCL SCI TECH 27, 58 (2016). https://doi.org/10.1007/s41365-016-0062-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0062-1

Keywords

Navigation