Skip to main content
Log in

DC performance and AC loss of cable-in-conduit conductors for International Thermonuclear Experimental Reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A reliable prediction of AC loss is essential for the application of International Thermonuclear Experimental Reactor (ITER) cable-in-conduit conductors (CICCs); however, the calculation of AC loss of ITER CICCs is a cumbersome task due to the complicated geometry of the multistage cables and the extreme operating conditions in ITER. In this paper, we described the models developed for hysteresis and coupling loss calculation, which can be suitable for the construction of ITER magnetic system. Meanwhile, we compared the results of theoretical analysis with the SULTAN test result to evaluate the numerical model we used. In addition, we introduced the n-value and AC loss with transport current for CICCs based on the DC measurement results at SULTAN, which lays the foundation for the further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.P. Bean, Superconductors as permanent magnets. Phys. Rev. Lett. 33, 3334–3337 (1962). doi:10.1063/1.1931166

    Google Scholar 

  2. C.P. Bean, Magnetization of high-field superconductors. Rev. Mod. Phys. 36, 31–34 (1964). doi:10.1103/RevModPhys.36.31

    Article  Google Scholar 

  3. H. London, G.R. Clarke, Superconductivity of thin films of niobium. Rev. Mod. Phys. 36, 320–323 (1964). doi:10.1103/RevModPhys.36.320

    Article  Google Scholar 

  4. A.M. Campbell, A general treatment of losses in multi-filamentary superconductors. Cryogenics 22, 3–16 (1982). doi:10.1016/0011-2275(82)90015-7

    Article  Google Scholar 

  5. A. Nijhuis, N.H.W. Noordman, O.A. Shevchenko et al., Electromagnetic and mechanical characterization of ITER CS-MC conductors affected by transverse cyclic loading, part 1: coupling current losses. IEEE Trans. Appl. Supercond. 9, 1069–1072 (1999). doi:10.1109/77.783482

    Article  Google Scholar 

  6. A. Nijhuis, N.H.W. Noordman, O.A. Shevchenko et al., Electromagnetic and mechanical characterization of ITER CS-MC conductors affected by transverse cyclic loading, part 2: inter-strand contact resistances. IEEE Trans. Appl. Supercond. 9, 754–757 (1999). doi:10.1109/77.783404

    Article  Google Scholar 

  7. A. Nijhuis, N.H.W. Noordman, O.A. Shevchenko et al., Electromagnetic and mechanical characterization of ITER CS-MC conductors affected by transverse cyclic loading, part 3: mechanical properties. IEEE Trans. Appl. Supercond. 9, 165–168 (1999). doi:10.1109/77.783262

    Article  Google Scholar 

  8. C. Zhou, E.P.A. Lanen, D. Veldhuis et al., Direct measurement of inter-filament resistance in superconducting multi-filamentary NbTi and Nb3Sn strands. IEEE Trans. Appl. Supercond. 21, 2501–2504 (2011). doi:10.1109/TASC.2010.2083619

    Article  Google Scholar 

  9. A. Nijhuis, Y. Ilyin, W. Abbas et al., Evolution of contact resistance and coupling loss in prototype ITER PF NbTi conductors under transverse cyclic load. IEEE Trans. Appl. Supercond. 13, 2388–2391 (2003). doi:10.1109/TASC.2003.813087

    Article  Google Scholar 

  10. S.A. Lelekhov, V.I. Tronza, AC loss before and after cyclic mechanical loading in the ITER RF CICCs. IEEE Trans. Appl. Supercond. 24, 4201005 (2014). doi:10.1109/TASC.2013.2285933

    Article  Google Scholar 

  11. C.M. Qin, X.J. Zhang, Y.P. Zhao et al., Electromagnetic analysis of the EAST 4-Strap ICRF antenna with HFSS cod. Plasma Sci. Technol 17, 167–172 (2015). doi:10.1088/1009-0630/17/2/12

    Article  Google Scholar 

  12. S. Fukui, M. Shibayama, J. Ogawa et al., Measurement and numerical analysis of AC loss in high temperature superconducting coil. IEEE Trans. Appl. Supercond. 22, 4704904 (2012). doi:10.1109/TASC.2011.2175684

    Article  Google Scholar 

  13. X.B. Ma, S.L. Liu, J. Li et al., Preliminary design of a helium-cooled ceramic breeder blanket for CFETR based on the BIT concept. Plasma Sci. Technol 16, 390–395 (2014). doi:10.1088/1009-0630/16/4/16

    Article  Google Scholar 

  14. Y.T. Song, S.T. Wu, Y.X. Wan et al., Concept design on RH maintenance of CFETR Tokamak reactor. Fusion Eng. Des. 89, 2331–2335 (2014). doi:10.1016/j.fusengdes.2014.03.045

    Article  Google Scholar 

  15. J.X. Zheng, Y.T. Song, X.F. Liu et al., Concept design of the CFETR central solenoid. Fusion Eng. Des. 91, 30–38 (2015). doi:10.1016/j.fusengdes.2014.12.018

    Article  Google Scholar 

  16. E. Pardo, D.-X. Chen, A. Sanchez et al., Alternating current loss in rectangular superconducting bars with a constant critical-current density. Supercond. Sci. Technol. 17, 83–87 (2004). doi:10.1088/0953-2048/17/1/014

    Article  Google Scholar 

  17. D.-X. Chen, E. Pardo, A. Sanchez, Transverse ac susceptibility of superconducting bars with elliptical cross-section and constant critical-current density. Supercond. Sci. Technol. 18, 997–1002 (2005). doi:10.1088/0953-2048/18/7/012

    Article  Google Scholar 

  18. E. Pardo, A. Sanchez, C. Navau, Magnetic properties of arrays of superconducting strips in a perpendicular field. Phys. Rev. B 67, 104517 (2003). doi:10.1103/PhysRevB.67.104517

    Article  Google Scholar 

  19. Y. Mawatari, Magnetic field distributions around superconducting strips on ferromagnetic substrates. Phys Rev B 77, 104505 (2008). doi:10.1103/PhysRevB.77.104505

    Article  Google Scholar 

  20. A. Devred, I. Backbier, D. Bessette et al., Status of ITER conductor development and production. IEEE Trans. Appl. Supercond. 22, 4804909 (2012). doi:10.1109/TASC.2012.2182980

    Article  Google Scholar 

  21. P. Bruzzone, Test of ITER conductors in SULTAN: an update. Fusion Eng. Des. 86, 1406–1409 (2011). doi:10.1016/j.fusengdes.2011.02.061

    Article  Google Scholar 

  22. A.M. Fuchs, B. Blau, P. Bruzzone et al., Facility status and results on ITER full-size conductor tests in SULTAN. IEEE Trans. Appl. Supercond. 11, 2022–2025 (2001). doi:10.1109/77.920251

    Article  Google Scholar 

  23. A. Godeke, B. Hakenet, A general scaling relation for the critical current density in Nb3Sn. Supercond. Sci. Technol. 19, R100–R116 (2006). doi:10.1088/0953-2048/19/10/R02

    Article  Google Scholar 

  24. A. Nijhuis, R.P. Meerdervoort, H.J.G. Krooshoop et al., The effect of axial and transverse loading on the transport properties of ITER Nb3Sn strands. Supercond. Sci. Technol. 26, 084004 (2013). doi:10.1088/0953-2048/26/8/084004

    Article  Google Scholar 

  25. Y. Ilyin, A. Nijhuis, E. Krooshoop et al., Scaling law for the strain dependence of the critical current in an advanced ITER Nb3Sn strand. Supercond. Sci. Technol. 20, 186–191 (2007). doi:10.1088/0953-2048/20/3/013

    Article  Google Scholar 

  26. D.-X. Chen, High-field ac susceptometer using Helmholtz coils as a magnetizer. Meas. Sci. Technol. 15, 1195–1202 (2004). doi:10.1088/0957-0233/15/6/021

    Article  Google Scholar 

  27. M.N. Wilson, Superconducting Magnets (Oxford Science Publications, London, 1987), pp. 44–50

    Google Scholar 

  28. B. Liu, Y. Wu, A. Devred et al., Conductor performance of TFCN4 and TFCN5 samples for ITER TF coils. IEEE Trans. Appl. Supercond. 25, 4201605 (2015). doi:10.1109/TASC.2014.2376931

    Google Scholar 

  29. A. Nijhuis, H.H.J. Kate, J.L. Duchateau et al., Control of contact resistance by strand surface coating in 36-strand NbTi CICCs. Cryogenics 41, 1–7 (2001). doi:10.1016/S0011-2275(01)00037-6

    Article  Google Scholar 

  30. X.F. Lu, D.P. Hampshire, The magnetic field, temperature and strain dependence of the critical current of a Nb3Sn strand using a six free-parameter scaling law. IEEE Trans. Appl. Supercond. 19, 2619–2623 (2009). doi:10.1109/TASC.2009.2018847

    Article  Google Scholar 

  31. D.M.J. Taylor, S.A. Keys, D.P. Hampshire et al., E–J characteristics and n-values of a niobium–tin superconducting wire as a function of magnetic field, temperature and strain. Phys. C 372, 1291–1294 (2002). doi:10.1016/S0921-4534(02)01012-2

    Article  Google Scholar 

  32. X.F. Lu, D.M.J. Taylor, D.P. Hampshire et al., Critical current scaling laws for advanced Nb3Sn superconducting strands for fusion applications with six free parameters. Supercond. Sci. Technol. 21, 105016 (2008). doi:10.1088/0953-2048/21/10/105016

    Article  Google Scholar 

  33. P. Bruzzone, The index n of the voltage-current curve in the characterization and specification of technical superconductors. Phys. C 401, 7–14 (2004). doi:10.1016/j.physc.2003.09.005

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank A. Devred, A. Vostner and C. Y. Gung from ITER Organization and D.-X. Chen from Universitat Autonoma de Barcelona for helpful discussion. We are thankful to University of Twente crew for strand preparation work and testing and ASIPP and CRPP personnel for providing some pictures and test results of TFCN4 conductor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Fang.

Additional information

This study was supported in part by Ministry of Science and Technology of China under Grant 2014GB105001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Fang, XY., Fang, J. et al. DC performance and AC loss of cable-in-conduit conductors for International Thermonuclear Experimental Reactor. NUCL SCI TECH 27, 74 (2016). https://doi.org/10.1007/s41365-016-0061-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0061-2

Keywords

Navigation