Skip to main content
Log in

The behavior of HfB2 under neutron irradiation

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Due to the interesting properties of hafnium diboride (HfB2) as a ceramic, it has drawn considerable attention from several researchers. To understand the radiation properties of HfB2 that may be used in the nuclear industry, the interaction of this composite under neutron irradiation was studied. It is obvious that, because HfB2 has Boron, this composite has the potential to absorb neutrons particularly in the range of thermal energy. The 10B (n, α) 7Li interaction is dominant among other interactions that produce alpha particles. The results revealed that alpha particles have a high fluctuation diagram following a saw-tooth spectrum for thermal neutron energy, which has to be carefully analyzed. If HfB2 is intended to be used in fusion facilities, for example in fusion reactors, its interaction with high neutrons (14 MeV) should be studied. The results of this case showed that, in the wide range of alpha energy, the amount of alpha particles is almost constant, so this continuum spectrum is almost flat and there is just a small peak at 2.31 MeV that belongs to the very famous interaction [10B (n, α) 7Li].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.A. Misheva, G. Toumbev, Radiation defects in HfB2 after neutron irradiation studied by perturbed angular correlations of 181Ta. Radiat. EFF Defects 90, 57–66 (1985). doi:10.1080/00337578508222516

    Article  Google Scholar 

  2. Z.F. Li, X.X. Xue, S.L. Liu et al., Effects of boron number per unit volume on the shielding properties of composites made with boron ores from China. Nucl. Sci. Tech. 23, 344–348 (2012). doi:10.13538/j.1001-8042/nst.23.344-348

    MathSciNet  Google Scholar 

  3. X.B. Yin, Y.Z. Wei, J.H. Zu, Adsorption behavior of Zr(IV) and Hf(IV) on a silica-based macroporous TODGA adsorbent. Nucl. Sci. Tech. 24, 040203 (2013). doi:10.13538/j.1001-8042/nst.2013.04.009

    Google Scholar 

  4. P. Cheminant, X. Deschanels, L. Boulanger et al., Microstructural damage in hafnium diboride under neutron irradiation. Key Eng. Mat. 132, 643–646 (1997). doi:10.4028/www.scientific.net/KEM.132-136.643

    Article  Google Scholar 

  5. X.F. Jiang, J. Cao, C.Y. Jiang et al., Tokamak fusion neutron spectrometer based on PXI bus. Nucl. Sci. Tech. 25, 040401 (2014). doi:10.13538/j.1001-8042/nst.25.040401

    Google Scholar 

  6. S.P. Li, X.F. Xu, H.R. Cao et al., Dynamic linear calibration method for a wide range neutron flux monitor system in ITER. Nucl. Sci. Tech. 24, 040402 (2013). doi:10.13538/j.1001-8042/nst.2013.04.002

    Google Scholar 

  7. D. Simeone, O. Hablot, V. Micalet et al., Contribution of recoil atoms to irradiation damage in absorber materials. J. Nucl. Mater. 246, 206–214 (1997). doi:10.1016/S0022-3115(97)00092-5

    Article  Google Scholar 

  8. G. Giorginis, V. Khriatchkov, The effect of particle leaking and its implications for measurements of the (n, α) reaction on light elements by using ionization chambers. Nucl. Instrum. Meth. A 538, 550–558 (2005). doi:10.1016/j.nima.2004.08.106

    Article  Google Scholar 

  9. D. Simeone, X. Deschanels, D. Gosset et al., Nuclear microprobe analysis of 7Li profile induced in HfB2 by a neutron irradiation. J. Nucl. Mater. 297, 244–250 (2001). doi:10.1016/S0022-3115(01)00644-4

    Article  Google Scholar 

  10. G. Giorginis, V. Khryachkov, The cross-section of the 10B (n, α) 7Li reaction measured in the MeV energy range. Nucl. Instrum. Meth. A 562, 737–740 (2006). doi:10.1016/j.nima.2006.02.035

    Article  Google Scholar 

  11. G. Zhang, L. Guo, R. Cao et al., Cross-section measurement for the 10B (n, α) 7Li reaction at 4.0 and 5.0 MeV. Appl. Radiat. Isot. 66, 1427–1430 (2008). doi:10.1016/j.apradiso.2007.07.035

    Article  Google Scholar 

  12. Online, Available: http://geant4.cern.ch/

  13. W.Z. Xu, Y.F. Liu, Z.Q. Tan et al., Geant4 simulation of plastic scintillators for a prototype μSR spectrometer. Nucl. Sci. Tech. 24, 040401 (2013). doi:10.13538/j.1001-8042/nst.2013.04.011

    Google Scholar 

  14. X. Qin, R. Zhou, J.F. Han et al., GEANT4 simulation of the characteristic gamma-ray spectrum of TNT under soil induced by DT neutrons. Nucl. Sci. Tech. 26, 010501 (2015). doi:10.13538/j.1001-8042/nst.26.010501

    Google Scholar 

  15. M.M. Nasseri, Q.L. Ma, Z.J. Yin et al., Monte-Carlo simulation for determining SNR and DQE of linear array plastic scintilating fiber. Nucl. Sci. Tech. 15(5), 304–307 (2004)

    Google Scholar 

  16. M.M. Nasseri, Q.L. Ma, Z.J. Yin et al., Monte-Carlo simulation to determine detector efficiency of plastic scintillating fiber. Nucl. Sci. Tech. 15(5), 308–311 (2004)

    Google Scholar 

  17. M.M. Nasseri, Q.L. Ma, Z.J. Yin, Image quality evaluation of linear plastic scintillating fiber array detector for X-ray imaging. Nucl. Sci. Tech. 15(5), 255, 361–364 (2004)

Download references

Acknowledgments

This work was supported by the School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology (AEOI). The authors would like to thank Dr. Mohammad Mehdi Farhoudi for his useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Nasseri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasseri, M.M. The behavior of HfB2 under neutron irradiation. NUCL SCI TECH 27, 27 (2016). https://doi.org/10.1007/s41365-016-0032-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0032-7

Keywords

Navigation