Skip to main content
Log in

The effect of plant essential oils on the Banded Greenhouse Thrips (Hercinothrips femoralis [O. M. Reuter 1891]) (Thysanoptera: Thripidae: Panchaetothripinae)

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Hercinothrips femoralis (O.M. Reuter, 1891) is an important polyphagous pest species that feeds on a variety of ornamental plants and may cause severe damage to them. The species is known to be easily spread by anthropochory. The lethal and protective efficiency of 5 plant extracts was evaluated against adults of H. femoralis in the laboratory. A well-shaken essential oil of a certain concentration was sprayed from a distance of 15 cm into the inner space of a plastic box with leaves and thrips specimens. Standard protective and lethal concentrations and doses of selected oils were specified. The results showed differences in repellency and lethality among essential oil product types and their concentrations. Cinnamon (Cinnamomum verum) oil was identified (p < 0.05) as the most rapid (after 30 min of exposure) and effective biopesticide with the highest protective and lethal effect (PC50 = 0.66%, LC50 = 15,80%) compared with oils from rosemary (Salvia rosmarinus), dill (Anethum graveolens), black pepper (Piper nigrum), and eucalyptus (Eucalyptus sp.). Moreover, the protective effect of rosemary oil (PC50: 28.11%) and the lethal effect of dill oil (LC50: 42.85%) were identified as statistically significant. The application of cinnamon oil is proposed as eco-safe plant protection against H. femoralis, especially in households and indoor spaces, where the use of less toxic biopesticides is environmentally friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abtew A, Subramanian S, Cheseto X, Kreiter S, Garzia GT, Martin T (2015) Repellency of plant extracts against the legume flower thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). Insects 6(3):608–625. https://doi.org/10.3390/insects6030608

    Article  PubMed  PubMed Central  Google Scholar 

  • Basaid K, Chebli B, Mayad EH, Furze JN, Bouharroud R, Krier F, Barakate M, Paulitz T (2021) Biological activities of essential oils and lipopeptides applied to control plant pests and diseases: a review. Int J Pest Manag 67(2):155–177. https://doi.org/10.1080/09670874.2019.1707327

    Article  CAS  Google Scholar 

  • Bediako A (2012) Inheritance of resistance to flower bud thrips (Megalurothrips sjostedti) in cowpea. Thesis, Kwame Nkrumah University of Science and Technology, M.Sc

    Google Scholar 

  • Bennison J, Maulden K, Dewhirst S, Pow E, Slatter P, Wadhams L (2002) Towards the development of a push-pull strategy for improving biological control of western flower thrips on chrysanthemum. In: Marullo R, Mound L (eds) Thrips and tospoviruses: proceedings of the 7th international symposium on Thysanoptera, Australian National Insect Collection, Canberra, pp 199–206

  • Brevik K, Schoville SD, Mota-Sanchez D, Chen YH (2018) Pesticide durability and the evolution of resistance: a novel application of survival analysis. Pest Manag Sci 74(8):1953–1963. https://doi.org/10.1002/ps.4899

    Article  CAS  PubMed  Google Scholar 

  • Cabras P, Schirra M, Pirisi FM, Garau VL, Angioni A (1999) Factors affecting imazalil and thiabendazole uptake and persistence in citrus fruits following dip treatments. J Agric Food Chem 47(8):3352–3354. https://doi.org/10.1021/jf990106h

    Article  CAS  PubMed  Google Scholar 

  • Chang KS, Tak JH, Kim SI, Lee WJ, Ahn YJ (2006) Repellency of Cinnamomum cassia bark compounds and cream containing cassia oil to Aedes aegypti (Diptera: Culicidae) under laboratory and indoor conditions. Pest Manag Sci 62:1032–1038. https://doi.org/10.1002/ps.1268

    Article  CAS  PubMed  Google Scholar 

  • Chauhan N, Malik A, Sharma S, Dhiman RC (2016) Larvicidal potential of essential oils against Musca domestica and Anopheles stephensi. Parasitol Res 115:2223–2231. https://doi.org/10.1007/s00436-016-4965-x

    Article  PubMed  Google Scholar 

  • Chiasson H, Bélanger A, Bostanian N, Vincent C, Poliquin A (2001) Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtained by three methods of extraction. J Econ Entomol 94(1):167–171. https://doi.org/10.1603/0022-0493-94.1.167

    Article  CAS  PubMed  Google Scholar 

  • Choi WI, Lee EH, Choi BR, Park HM, Ahn YJ (2003) Toxicity of plant essential oils to Trialeurodes vaporariorum (Homoptera: Aleyrodidae). J Econ Entomol 96(5):1479–1484. https://doi.org/10.1093/jee/96.5.1479

    Article  CAS  PubMed  Google Scholar 

  • Cloyd RA (2016) Western flower thrips (Thysanoptera: Thripidae) and insecticide resistance: an overview and strategies to mitigate insecticide resistance development. J. Entomol Sci 51:257–273

    Google Scholar 

  • Cloyd RA, Galle CL, Keith SR, Kalscheur NA, Kemp KE (2009) Effect of commercially available plant-derived essential oil products on arthropod pests. J Econ Entomol 102(4):1567–1579. https://doi.org/10.1603/029.102.0422

    Article  CAS  PubMed  Google Scholar 

  • Collins DW (1998) Recent interceptions of Echinothrips americanus Morgan (Thysanoptera, Thripidae) imported into England. Entomol Month Magaz 134:1–3

    Google Scholar 

  • Costa AV, Pinheiro PF, de Queiroz VT, Rondelli VM, Marins AK, Valbon WR, Pratissoli D (2015) Chemical composition of essential oil from Eucalyptus citriodora leaves and insecticidal activity against Myzus persicae and Frankliniella schultzei. J Essent Oil-Bear Plants 18(2):374–381. https://doi.org/10.1080/0972060X.2014.1001200

    Article  CAS  Google Scholar 

  • Dixon RA (1999) Plant natural products: the molecular genetic basis of biosynthetic diversity. Curr Opin Biotechnol 10(2):192–197. https://doi.org/10.1016/S0958-1669(99)80034-2

    Article  CAS  PubMed  Google Scholar 

  • Ebadollahi A, Nouri-Ganbalani G, Hoseini SA, Sadeghi GR (2012) Insecticidal activity of essential oils of five aromatic plants against Callosobruchus maculatus F. (Coleoptera: Bruchidae) under laboratory conditions. J Essent Oil-Bear Plants 15(2):256–262. https://doi.org/10.1080/0972060X.2012.10644044

    Article  Google Scholar 

  • El-Gizawy KKH, Halawa SM, Mehany AL (2018) Effect of essential oils of clove and dill applied as an insecticidal contact and fumigant to control some stored product insects. Arab J Nucl Sci Appl 51(4):81–88. https://doi.org/10.21608/ajnsa.2018.12394

    Article  Google Scholar 

  • Fedor PJ, Varga L (2007) The first record of Gynaikothrips ficorum Marchal, 1908 (Thysanoptera) in Slovakia. Thysanopteron - Pismo Entomol 3(1):1–2

    Google Scholar 

  • Fedor P, Doričová M, Dubovský M, Kisel’ák J, Zvarík M (2019) Cereal pests among nest parasites – the story of barley thrips, Limothrips denticornis Haliday (Thysanoptera: Thripidae). Entomol Fenn 21(4):221–231. https://doi.org/10.33338/ef.84532

    Article  Google Scholar 

  • Grieneisen ML, Isman MB (2018) Recent developments in the registration and usage of botanical pesticides in California. In: Zhang M, Jackson S, Robertson MA, Zeiss MR (eds) Managing and analyzing pesticide use data for pest management, environmental monitoring, public health, and public policy, American Chemical Society Symposium Series, vol 1283, pp 149–169.

  • Hamasaki RT (1987) Impact of insecticides and a predatory mite on the melon thrips, Thrips palmi Karny. M.S. thesis, University of Hawaii

  • Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev 94(1):135–155. https://doi.org/10.1111/brv.12440

    Article  PubMed  Google Scholar 

  • Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22(3):534–543. https://doi.org/10.1111/j.1523-1739.2008.00951.x

    Article  PubMed  Google Scholar 

  • Hlina BL, Birceanu O, Robinson CS, Dhiyebi H, Wilkie MP (2021) The relationship between thermal physiology and lampricide sensitivity in larval sea lamprey (Petromyzon marinus). J Great Lakes Res 47:272–284. https://doi.org/10.1016/j.jglr.2021.10.002

    Article  Google Scholar 

  • Houston KJ, Mound LA, Palmer JM (1991) Two pest thrips (Thysanoptera) new to Australia, with notes on the distribution and structural variation of other species. Aust J Entomol 30(3):231–232. https://doi.org/10.1111/j.1440-6055.1991.tb00419.x

    Article  Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19(8–10):603–608. https://doi.org/10.1016/S0261-2194(00)00079-X

    Article  CAS  Google Scholar 

  • Isman MB (2019) Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem Rev. https://doi.org/10.1007/s11101-019-09653-9

    Article  Google Scholar 

  • Jensen SE (2000) Insecticide resistance in the western flower thrips. Frankliniella Occidentalis Integr Pest Manag Rev 5(2):131–146. https://doi.org/10.1023/A:1009600426262

    Article  Google Scholar 

  • Jenser G, Czenz K (1988) Thysanoptera species occurring frequently on cultivated plants in Hungary. Acta Phytopathol Entomol Hung 23:285–289

    Google Scholar 

  • Karadjova O, Krumov Y (2003) Echinothrips americanus Morgan (Thysanoptera: Thripidae), a new pest of the Bulgarian Greenhouses. In: Proceedings of the international scientific conference at the 50th Anniversary of the University of Forestry, Plant Protection Section, Sofia, pp 122–125

  • Katerinopoulos HE, Pagona G, Afratis A, Stratigakis N, Rodikatis N (2005) Composition and insect attracting activity of the essential oil of Rosmarinus officinalis. J Chem Ecol 31(1):111–122. https://doi.org/10.1007/s10886-005-0978-0

    Article  CAS  PubMed  Google Scholar 

  • Kaur V, Kaur R, Bhardwaj U (2021) A review on dill essential oil and its chief compounds as natural biocide. Flavour Fragr J 36:412–431. https://doi.org/10.1002/ffj.3633

    Article  CAS  Google Scholar 

  • Kirk WDJ, de Kogel WJ, Koschier EH, Teulon DAJ (2021) Semiochemicals for Thrips and their use in pest management. Annu Rev Entomol 66(1):101–119. https://doi.org/10.1146/annurev-ento-022020-081531

    Article  CAS  PubMed  Google Scholar 

  • Koschier EH (2006) Plant allelochemicals in thrips control strategies. Adv Phytomed 3:221–249. https://doi.org/10.1016/S1572-557X(06)03010-8

    Article  CAS  Google Scholar 

  • Koschier EH (2008) Essential oil compounds for thrips control – a review. Nat Prod Comm 3(7):1171–1182

    CAS  Google Scholar 

  • Koschier EH, Sedy KA (2003) Labiate essential oils affecting host selection and acceptance of Thrips tabaci lindeman. Crop Prot 22(7):929–934. https://doi.org/10.1016/S0261-2194(03)00092-9

    Article  CAS  Google Scholar 

  • Koschier EH, Sedy KA, Novak J (2002) Influence of plant volatiles on feeding damage caused by the onion thrips Thrips tabaci. Crop Prot 21(5):419–425. https://doi.org/10.1016/S0261-2194(01)00124-7

    Article  CAS  Google Scholar 

  • Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopest Int 4:63–84

    Google Scholar 

  • Kumar S (2015) Biopesticide: an environment friendly pest management strategy. J Biofertil Biopestici 6(1):1000e127

    Google Scholar 

  • Lee GS, Lee W (2016) Rediscovery of an exotic thrips Hercinothrips femoralis (Reuter), in Korea, severely damaging to ornamental plants. Korean Soc Appl Entomol 1:102

    Google Scholar 

  • Lewis T (1997) Thrips as crop pests. CABI Publishing

    Book  Google Scholar 

  • Li X-W, Zhang Z-J, Hafeez M, Huang J, Zhang J-M, Wang L-K, Lu Y-B (2021) Rosmarinus officinialis L. (Lamiales: Lamiaceae) a promising repellent plant for Thrips management. J Econ Entomol 114(1):131–141

    Article  CAS  PubMed  Google Scholar 

  • Martinez JA (2012) Natural fungicides obtained from plants. In: Dhanasekaran D (ed) Fungicides for plant and animal diseases. IntechOpen, New York, pp 3–28

    Google Scholar 

  • Masarovič R, Doričová M, Prokop P, Fedor P (2014) “Testing the limits” - an interesting record of the exotic banded greenhouse thrips Hercinothrips femoralis (Thysanoptera: Thripidae: Panchaetothripinae) at high Carpathian mountain altitudes. Biologia 69(11):1631–1634. https://doi.org/10.2478/s11756-014-0458-5

    Article  Google Scholar 

  • Mound LA (1983) Natural and disrupted patterns of geographical distribution in Thysanoptera (Insecta). J Biogeogr 10(2):119–133. https://doi.org/10.2307/2844623

    Article  Google Scholar 

  • Mound LA, Teulon DA (1995) Thysanoptera as phytophagous opportunists. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Springer, Boston, pp 3–19

    Chapter  Google Scholar 

  • Mound LA, Morison GD, Pitkin BR, Palmer JM (1976) Thysanoptera. In: Mound LA et al (eds) Handbooks for the identification of British insects. Vol 1(11), p 79

  • Muthomi JW, Otieno PE, Chemining’wa GN, Nderitu JH, Wagacha JM (2008) Effect of chemical spray on insect pests and yield quality of food grain legumes. J Entomol 3:156–163

    Article  Google Scholar 

  • Palmer JM, Mound LA, Du Heaume GJ (1989) Thysanoptera. In: Betts CR (ed) CIE guides to insects of importance to man. Thysanoptera CABI, London, p 73

    Google Scholar 

  • Pelikan J (1989) Nově importovany škůdce sklenikovych rostlin, třasněnka zapadni, Frankliniella occidentalis (Pergande, 1895). Ochr Rostl 25:271–278

    Google Scholar 

  • Pelikan J (1991) Truběnka fikusova (Gynaikothrips ficorum Marchal, 1908) ve sklenicich v Československu. Ochr Rostl 27:287–291

    Google Scholar 

  • Pelikán J (1977) Thysanoptera. In: Dlabola J (ed) Check list – Enumeratio insectorum bohemoslovakiae. Acta Entomol Musei Natl Pragae vol 15, pp 55–59

  • Peneder S, Koschier EH (2011) Toxic and behavioural effects of carvacrol and thymol on Frankliniella occidentalis larvae. J Plant Dis Prot 118(1):26–30. https://doi.org/10.1007/BF03356377

    Article  CAS  Google Scholar 

  • Phillips A, Appel A (2010) Fumigant toxicity of essential oils to the German Cockroach (Dictyoptera: Blattellidae). J Econ Entomol 103(3):781–790. https://doi.org/10.1603/EC09358

    Article  CAS  PubMed  Google Scholar 

  • Picard I, Hollingsworth RG, Salmieri S, Lacroix M (2012) Repellency of essential oils to Frankliniella occidentalis (Thysanoptera: Thripidae) as affected by type of oil and polymer release. J Econ Entomol 105(4):1238–1247. https://doi.org/10.1603/EC11292

    Article  PubMed  Google Scholar 

  • Pobożniak M, Grabowska D, Olczyk M (2016) Effect of orange and cinnamon oil on the occurrence and harmfulness of Thrips tabaci lind. on onion–preliminary results. Acta Hortic Regiotecturae 19:13–14. https://doi.org/10.1515/ahr-2016-0016

    Article  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Ratnasekera D, Rajapakse R (2009) Repellent properties of plant oil vapours on pulse beetle (Callasobruchus maculatus l.) (Coleoptera: Bruchidae) in stored green gram (Vigna radiata walp.). Trop Agric Res Ext 12:13–16

    Article  Google Scholar 

  • Riley DG, Joseph SV, Srinivasan R, Diffie S (2011) Thrips vectors of Tospoviruses. J Integ Pest Manag 1(2):1–10. https://doi.org/10.1603/IPM10020

    Article  Google Scholar 

  • Roditakis E, Mound LA, Roditakis NE (2006) Note: first record in crete of Hercinothrips femoralis in greenhouse banana plantations. Phytoparasitica 34(5):488–490. https://doi.org/10.1007/BF02981204

    Article  Google Scholar 

  • Samarasekera R, Kalhari KS, Weerasinghe IS (2006) Insecticidal activity of essential oils of Ceylon Cinnamomum and Cymbopogon species against Musca domestica. J Essent Oil Res 18(3):352–354. https://doi.org/10.1080/10412905.2006.9699110

    Article  CAS  Google Scholar 

  • Seczkowska K (1974) The occurrence of Thysanoptera on greenhouse plants. Ann Univ Mariae Curie-Sklodowska C Biol 29:187–193

    Google Scholar 

  • Štefánik M, Zvaríková M, Masarovič R, Fedor P (2019) The significance of anthropochory in Hercinothrips femoralis (Thysanoptera: Thripidae) – Short Communication. Plant Prot Sci 55(4):262–265

    Article  Google Scholar 

  • Stepanycheva E, Petrova M, Chermenskaya T, Pavela R (2019) Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg. Environ Sci Pollut Res Int 30:30885–30892. https://doi.org/10.1007/s11356-019-06239-y

    Article  CAS  Google Scholar 

  • Stopar K, Trdan S, Bartol T (2021) Thrips and natural enemies through text data mining and visualization. Plant Prot Sci 57(1):47–58. https://doi.org/10.17221/34/2020-PPS

    Article  Google Scholar 

  • Sukmuang K, Pumnuan J, Insung A (2017) Insecticidal properties of plant essential oils against common blossom thrips [Frankliniella schultzei (Trybom)]. Int J Agric Technol 13:1309–1316

    Google Scholar 

  • Trdan S (2002) Resar Hercinothrips femoralis (Reuter) ugotovljen tudi v Sloveniji [Hercinothrips femoralis (Reuter) also recorded in Slovenia]. Sodob Kmet 35(6):242–244

    Google Scholar 

  • Trdan S, Milevoj L, Raspudić E, Žežlina I (2003) The first record of Echinothrips americanus Morgan in Slovenia. Acta Phytopathol Entomol Hung 38(1):157–166. https://doi.org/10.1556/aphyt.38.2003.1-2.18

    Article  Google Scholar 

  • Trdan S, Jović M, Andjus L (2005) Palm thrips, Parthenothrips dracaenae (Heeger) (Thyanoptera: Thripidae), in Slovenia: Still a pest of minor importance? Acta Agric Slov 85(2):211–217

    Google Scholar 

  • Trdan S, Kužnik L, Vidrih M (2007) First results concerning the efficacy of entomopathogenic nematodes against Hercinothrips femoralis (Reuter). Acta Agric Slov 89(1):5–13

    Article  Google Scholar 

  • Tripathi AK, Upadhyay S, Bhuiyan M, Bhattachyrya PR (2009) A review on prospects of essential oils as biopesticide in insect-pest management. J Pharmacogn Phytotherapy 1(5):052–063

    CAS  Google Scholar 

  • Varga L (2008) Hercinothrips femoralis (Reuter, 1891) – a new pest thrips (Thysanoptera: Panchaetothripinae) in Slovakia. Plant Prot Sci 44(3):114–118

    Article  Google Scholar 

  • Varga L, Fedor PJ (2008) First interception of the greenhouse pest Echinothrips americanus Morgan, 1913 (Thysanoptera: Thripidae) in Slovakia. Plant Prot Sci 44(4):155–158

    Article  Google Scholar 

  • Vierbergen G (1995) International movement, detection and quarantine of Thysanoptera pests. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Springer, Boston, pp 119–132

    Chapter  Google Scholar 

  • Vierbergen G, Cean M, Szeller IH, Jenser G, Masten T, Šimala M (2006) Spread of two thrips pests in Europe: Echinothrips americanus and Microcephalothrips abdominalis (Thysanoptera: Thripidae). Acta Phytopathol Entomol Hung 41(3–4):287–296. https://doi.org/10.1556/aphyt.41.2006.3-4.11

    Article  Google Scholar 

  • Vierbergen G (2021) Fauna Europaea: Thysanoptera, Thripidae. Fauna Europaea, https://fauna-eu.org Accessed 22 Oct 2021 https://doi.org/10.3409/fb_70-4.22

  • Yi CG, Choi BR, Park HM, Park CG, Ahn YJ (2006) Fumigant toxicity of plant essential oils to Thrips palmi (Thysanoptera: Thripidae) and Orius strigicollis (Heteroptera: Anthocoridae). J Econ Entomol 99(5):1733–1738. https://doi.org/10.1093/jee/99.5.1733

    Article  PubMed  Google Scholar 

Download references

Funding

Supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic, Grant No. VEGA 1/0286/20.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection: MZ, KB, LP; Data curation: MZ, MZ; Methodology: MZ, RM, PP, PF; Data analysis: MZ; Writing—original draft preparation: MZ, RM; Writing – review and editing: PF, PP; Formal analysis and investigation: RM, LP; Visualization: MZ, MZ; Funding acquisition: PF, PP; Resources: PF, PP; Supervision: PF, PP; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rudolf Masarovič.

Ethics declarations

Conflict of interest

The authors do not declare any conflict of interest, related to this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvaríková, M., Masarovič, R., Zvarík, M. et al. The effect of plant essential oils on the Banded Greenhouse Thrips (Hercinothrips femoralis [O. M. Reuter 1891]) (Thysanoptera: Thripidae: Panchaetothripinae). J Plant Dis Prot 130, 747–755 (2023). https://doi.org/10.1007/s41348-023-00751-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00751-7

Keywords

Navigation