Skip to main content
Log in

Seed-borne diseases in pasture grasses and legumes: state of the art and gaps in knowledge

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Information on fungal seed-borne diseases on main pasture grasses and legumes from the literature was reviewed. These diseases reduce biomass production, quality of forage, and persistence due to progressive plant mortality. The main fungal pathogens associated with forage seeds belong to the orders Hypocreales, Pleosporales, and Helotiales in the phylum Ascomycota. Hypocreales includes the genus Fusarium, which reduces seedling establishment, and contaminates plant tissues with mycotoxins. Pleosporales includes many genera associated with seeds of legumes (Leptosphaerulina and Ascochyta), grasses (Bipolaris, Pyrenophora, Curvularia, Drechslera, Alternaria, Exserohilum, and Phoma), and both (Stemphylium). Some fungal genera within this order induce the accumulation of coumestans (leafspot-producing fungi) or produce secondary metabolites that contaminate tissues (Alternaria). Within Helotiales, the main genera are Sclerotinia (affecting mainly legumes), Clarireedia and Gloeotinia (affecting grasses). Pyricularia (order Magnaporthales), Colletotrichum (order Glomerellales), and Cercospora (order Mycosphaerellales) also include seed-borne fungi that provoke diseases on forage species as well as Rhizoctonia (order Cantharellales) and Ustilago (order Ustilaginales) which belong to the phylum Basidiomycota. These pathogens affect pastures by (i) compromising seedling establishment at early stages and (ii) constraining growth by reducing yield and seed quality at later stages. Future research should address (i) generation of reliable data on forage yield loss due to seed-borne diseases, (ii) assessment of the interaction between seed-borne pathogens and other biotic and/or abiotic stresses, (iii) delve into the study of the role of wild and/or cultivated forage species as inoculum reservoirs of pathogens, and (vi) shed light on the contamination issue due to mycotoxins generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Abraham P, Alimpta PD, Bdliya BS (2019) Inheritance of resistance to ergot disease in a diallel cross of pearl millet (Pennisetum glaucum (L.) R. Br.). Tanzan J Agric Sci. 18 (Suppl 2):50–58

    Google Scholar 

  • Akamatsu HO, Chilvers MI, Peever TL (2008) First report of spring black stem and leaf spot of alfalfa in Washington State caused by Phoma medicaginis. Plant Dis 92(Suppl 5):833–833

    Article  CAS  PubMed  Google Scholar 

  • Alderman SC, Halse RR, White JF (2004) A reevaluation of the host range and geographical distribution of Claviceps species in the United States. Plant Dis 88(Suppl 1):63–81

    Article  PubMed  Google Scholar 

  • Alderman SC, Ocamb CM, Mellbye ME, Sedegui MS (2007) Occurrence of Ustilago striiformis in Dactylis glomerata seed production fields in Oregon. Plant Health Prog 8(Suppl 1):9

    Article  Google Scholar 

  • Alderman SC (2001) Blind seed disease. US: Department of Agriculture, Agricultural Research Service

  • Alderman SC (2006) Ergot: biology and control. Corvallis: USDA-ARS National Forage Seed Production Research Center

  • Alfieri SA, Langdon KR, Wehlburg C, Kimbrough JW (1984) Index of Plant Diseases in Florida (Revised). Gainesville, FL: Florida Department of Agriculture and Consumer Services, Division of Plant Industry

  • Altier N (1996) Enfermedades de leguminosas forrajeras: diagnóstico, epidemiología y control. Serie Técnica INIA 74.

  • Andersen B, Nielsen KF, Fernández-Pinto V, Patriarca A (2015) Characterization of Alternaria strains from Argentinean blueberry, tomato, walnut, and wheat. Int J Food Microbiol 196:1–10

    Article  CAS  PubMed  Google Scholar 

  • Aoki T, Vaughan MM, McCormick SP, Busman M, Ward TJ, Kelly A, Johnston PR, Geiser DM (2005) Fusarium dactylidis sp. nov., a novel nivalenol toxin-producing species sister to F. pseudograminearum isolated from orchard grass (Dactylis glomerata) in Oregon and New Zealand. Mycologia. 107(Suppl 2):409–418

    Google Scholar 

  • Association of Official Seed Analysts (AOSA) (1983) Seed vigour testing handbook. Lincoln, USA. Contribution No 32, pp 89

  • Ayala W (2001) Defloration management of birdsfoot trefoil (Lotus corniculatus). PhD Dissertation. Auckland: Massey University

  • Baker KF (1979) Seed pathology-concepts and methods of control. J Seed Sci 4(Suppl 2):57–67

    Google Scholar 

  • Barbetti MJ, You MP (2014) Opportunities and challenges for improved management of foliar pathogens in annual clover pastures across southern Australia. Crop Pasture Sci 65(Suppl 12):1249–1266

    Article  CAS  Google Scholar 

  • Barbetti MJ, Riley IT, You MP, Li H, Sivasithamparam K (2006) The association of necrotrophic fungal pathogens and plant parasitic nematodes with the loss of productivity of annual medic-based pastures in Australia and options for their management. Australas Plant Pathol 35(Suppl 6):691–706

    Article  Google Scholar 

  • Barbetti M, You M, Li H, Ma XU, Sivasithamparam K (2007) Management of root diseases of annual pasture legumes in Mediterranean ecosystems-a case study of subterranean clover root diseases in the south-west of Western Australia. Phytopathol Mediterr. 46(Suppl 3):239–258

    Google Scholar 

  • Batnini M, Haddoudi I, Taamali W, Djebali N, Badri M, Mrabet M, Mhadhbi H (2021) Medicago truncatula in interaction with Fusarium and Rhizoctonia phytopathogenic fungi: fungal aggressiveness, plant response biodiversity and character heritability indices. Plant Pathol J 37(Suppl 4):315–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun U, Crous PW, Nakashima C (2015) Cercosporoid fungi (Mycosphaerellaceae) 3. Species on monocots (Poaceae, true grasses). IMA Fungus 6:25–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Brecht MO, Stiles CM, Datnoff LE (2007) Evaluation of pathogenicity of Bipolaris and Curvularia spp. on dwarf and ultradwarf bermudagrasses in Florida. Plant Health Prog. 8(Suppl 1):30

    Article  Google Scholar 

  • Brecht MO (2005) Ecology and pathogenicity of Bipolaris spp. and Curvularia spp. associated with decline of ultradwarf bermudagrass golf putting greens in Florida, USA. PhD Dissertation. Florida, FR: Graduate School of University of Florida

  • Castroagudín VL, Danelli AL, Moreira SI, Reges JT, de Carvalho G, Maciel JL et al (2017) The wheat blast pathogen Pyricularia graminis-tritici has complex origins and a disease cycle spanning multiple grass hosts. Biorxiv. https://doi.org/10.1101/203455

    Article  Google Scholar 

  • Cegiełko M, Kiecana I, Kachlicki P, Wakuliński W (2011) Pathogenicity of Drechslera avenae for leaves of selected oat genotypes and its ability to produce anthraquinone compounds. Acta Sci Pol Hortorum Cultus 10(Suppl 2):11–22

    Google Scholar 

  • Castañares E, Martínez M, Cristos D, Rojas D, Lara B, Stenglein S, Dinolfo MI (2019) Fusarium species andmycotoxin contamination in maize in Buenos Aires province. Argentina. Eur J Plant Pathol. 155(Suppl 4):1265–1275

    Article  Google Scholar 

  • Chand R, Singh V, Kumar P, Pal C, Chowdappa P (1954) The genus Cercospora: biology and taxonomy. In: Chowdappa P, Singh HP (eds.) Fungal leaf spot diseases of annual and perennial crops. Westville Publishing House, New Delhi

  • Chiotta ML, Fumero MV, Cendoya E, Palazzini JM, Alaniz-Zanon MS, Ramirez ML, Chulze SN (2020) Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Rev Arg Microbiol 52(Suppl 4):339–347

    Google Scholar 

  • Chun SC, Loo HM, Lee SH, Jung IM (2003) A seedborne fungus Bipolaris spicifera detected from imported grass seeds. Plant Pat J 19(Suppl 3):133–137

    Article  Google Scholar 

  • Clarke RG, Eagling DR (1994) Effects of pathogens on perennial pasture grasses. New Zealand J Agric Res 37(Suppl 3):319–327

    Article  Google Scholar 

  • Clarke RG (1999) Diseases of lucerne - 2: Fungal leaf diseases. Agriculture Notes. State of Victoria: Department of Primary Industries

  • Cong LL, Sun Y, Kang JM, Li MN, Long RC, Zhang TJ, Yang QC (2016) First report of root rot disease caused by Fusarium proliferatum on alfalfa in China. Plant Dis 100(Suppl 12):2526–2526

    Article  Google Scholar 

  • Costa MM, Melo MP, Carmo FS, Moreira GM, Guimarães EA, Rocha FS et al (2021) Fusarium species from tropical grasses in Brazil and description of two new taxa. Mycol Prog 20(Suppl 1):61–72

    Article  Google Scholar 

  • Couch HB, Bloom JR (1960) Influence of environment on diseases of turf-grasses. II. Influence of nutrition, pH and soil moisture on Sclerotinia dollar spot. Phytopathology 50:761–763

    CAS  Google Scholar 

  • Cromey MG, Cole AL (1985) Cytology of the host-pathogen interactions between Lolium perenne and Drechslera dictyoides. Plant Pathol 34(Suppl 1):83–94

    Article  Google Scholar 

  • Crous PW, Summerell BA, Swart L, Denman S, Taylor JE, Bezuidenhout CM et al (2011) Fungal pathogens of Proteaceae. Persoonia 27:20–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva GZ, Martins CC, Nascimento LC, Barreto GG, Farias OR (2019) Phytosanitary quality of Brachiaria brizantha ‘BRS Piatã’seeds in function of climate conditions. Rev Bras Eng Agric Ambient 23:237–243

    Article  Google Scholar 

  • dos Santos GR, Tschoeke PH, Silva LD, Silveira MC, Reis HB, Brito DR, Carlos DD (2014) Sanitary analysis, transmission and pathogenicity of fungi associated with forage plant seeds in tropical regions of Brazil. J Seed Sci 36:54–62

    Article  Google Scholar 

  • dos Santos PR, Leão EU, Aguiar RW, Melo MP, dos Santos GR (2018) Morphological and molecular characterization of Curvularia lunata pathogenic to Andropogon grass. Bragantia 77:326–332

    Article  Google Scholar 

  • dos Santos PR, de Souza C, Mourão D, Dalcin MS, Osorio PR, de Oliveira Lima FS, dos Santos GR (2022) Pathogenicity of fungi associated with Andropogon grass seeds. J Plant Pathol 104(Suppl 2):565–573

    Article  Google Scholar 

  • Dugan FM, Lupien SL (2003) Filamentous fungi quiescent in seeds and culm nodes of weedy and forage grass species endemic to the Palouse Region of Washington and Idaho. Mycopathol 156(Suppl 1):31–40

    Google Scholar 

  • Ekwomadu TI, Akinola SA, Mwanza M (2021) Fusarium mycotoxins, their metabolites (Free, emerging, and masked), food safety concerns, and health impacts. Int J Environ Res Public 18(Suppl 22):11741

    Article  CAS  Google Scholar 

  • Ellis MH, Rebetzke GJ, Kelman WM, Moore CS, Hyles JE (2004) Detection of Wheat streak mosaic virus in four pasture grass species in Australia. Plant Pathol 53(Suppl):2

    Google Scholar 

  • Entwistle K, Espevig T, Crouch JA, Normann K, Usoltseva M (2018) The effect of temperature on the in vitro growth rate of Sclerotinia homoeocarpa isolates of different origin. In: 6th European Turfgrass society conference - Different shades of green. Manchester, UK.

  • Espevig T, Brurberg MB, Kvalbein A (2015) First report of dollar spot, caused by Sclerotinia homoeocarpa, of creeping bentgrass in Norway. Plant Dis 99(Suppl 2):287–287

    Article  CAS  PubMed  Google Scholar 

  • Espevig T, Brurberg MB, Usoltseva M, Dahl Å, Kvalbein A, Normann K, Crouch JA (2017) First report of dollar spot disease, caused by Sclerotinia homoeocarpa, of Agrostis stolonifera in Sweden. Crop Sci. 57(Suppl S1):349

    Google Scholar 

  • Falloon R, Hume D (1988) Productivity and persistence of prairie grass (Bromus willdenowii Kunth). Grass Forage Sci 43:179–184

    Article  Google Scholar 

  • Falloon R, Rolston M (1990) Productivity of prairie grass (Bromus willdenowii Kunth) affected by sowing date and the head smut fungus (Ustilago bullata Berk.). Grass Forage Sci. 45:357–364

    Article  Google Scholar 

  • Frate CA, Davis RM (2007) Alfalfa diseases and management. In: Summers CG, Putnam DH (eds) Irrigated alfalfa management for Mediterranean and Desert zones. University of California, Oakland, California

  • Fischer GW (1953) Manual of the North American Smut Fungi. The Ronald Press Co., New York

    Google Scholar 

  • Gallo A, Giuberti G, Frisvad JC, Bertuzzi T, Nielsen KF (2015) Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 7(Suppl 8):3057–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparetto BF, Franke LB, Andrade CC, Dalbosco M, Duarte V, Moreira SI, Alves E (2017) First Report of Bipolaris micropus, Curvularia geniculata, Epicoccum sorghinum, and Fusarium incarnatum on Paspalum guenoarum seeds in Rio Grande do Sul. Brazil Plant Dis 101(Suppl 9):1679–1679

    Article  Google Scholar 

  • Gawande SP, Nagrale DT, Sharma AK (2020) Major seed-borne diseases of important forage and fibre crops: symptomatology, aetiology and their economic importance. In: Kumar R, Gupta A (eds). Seed-borne diseases of agricultural crops: detection, diagnosis & management. Springer, Singapore

  • Gladieux P, Condon B, Ravel S, Soanes D, Maciel JL, Nhani A et al (2018) Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio 9:1219–1217

    Article  Google Scholar 

  • Hampton JG (2002) What is seed quality? Seed Sci Technol. 30:1–10

    Google Scholar 

  • Hu J, Zhou Y, Geng J, Dai Y, Ren H, Lamour K (2019) A new dollar spot disease of turfgrass caused by Clarireedia paspali. Mycological Prog 18(Suppl 12):1423–1435

    Article  Google Scholar 

  • Iannone LJ, Vignale MV, Pinget AD, Re A, Mc Cargo PD, Novas MV (2017) Seed-transmitted Epichloë sp. endophyte alleviates the negative effects of head smut of grasses (Ustilago bullata) on Bromus auleticus. FungalEcol. 29:45–51

    Google Scholar 

  • Jones RA (2022) Alteration of plant species mixtures by virus infection: Managed pastures the forgotten dimension. Plant Path. https://doi.org/10.1111/ppa.13571

    Article  Google Scholar 

  • Kanbe M, Mizukami Y, Fujimoto F (2002) Improvement of resistance to Sclerotinia crown and stem rot of alfalfa (Medicago sativa) through phenotypic recurrent selection. Jpn Agric Res 36(Suppl 1):1–5

    Google Scholar 

  • Khairnar DN (2015) Studies on Seed moulds of Pearl millet (Pennisetum typhoides). Int Res J Science Engineering 3(Suppl 3):113–116

    CAS  Google Scholar 

  • Kaur A, Sharma VK (2021) Cross-infectivity of Helminthosporium isolates occurring on barley and other graminaceous hosts. Agri Res J 58(Suppl 1):75–81

    Google Scholar 

  • Kirkpatrick MT, Rupe JC, Rothrock CS (2006) Soybean response to flooded soil conditions and the association with soilborne plant pathogenic genera. Plant Dis 90(Suppl 5):592–596

    Article  CAS  PubMed  Google Scholar 

  • Kononenko G, Burkin A, Gavrilova O, Gagkaeva T (2015) Fungal species and multiple mycotoxin contamination of cultivated forage crops. Agri Food Sci 24(Suppl 4):323–330

    CAS  Google Scholar 

  • Kruse J, Dietrich W, Zimmermann H, Klenke F, Richter U, Richter H, Thines M (2018) Ustilago species causing leaf-stripe smut revisited. IMA Fungus 9(Suppl 1):49–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Gupta A (2020) Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer, Singapore, pp 1–871

    Book  Google Scholar 

  • Lam A (1985) Drechslera andersenii sp nov and other Drechslera spp on ryegrass in England and Wales. Trans. British Mycol Soc. 85(4):595–602

    Article  Google Scholar 

  • Lamprecht SC, Marasas WF, Knox-Davies PS, Calitz FJ (1990) Incidence of Fusarium species in different cropping systems of annual Medicago species and wheat. Phytophylactica 22(Suppl 1):69–76

    Google Scholar 

  • Lasca CC, Vechiato MH, Kohara EY (2004) Controle de fungos de sementes de Brachiaria spp.: eficiência de fungicidas e influência do período de armazenamento de sementes tratadas sobre a ação desses produtos. Arq Inst Biol. 71(Suppl 4):465–472

    Google Scholar 

  • Leath KT (2019) Minimizing disease losses in forage crops through management. In: Proceedings of the XIV international grassland congress, pp 579–581, CRC Press, Lexington, Kentucky.

  • Li F, Duan T, Li Y (2020) Effects of the fungal endophyte Epichloë festucae var. lolii on growth and physiological responses of perennial ryegrass cv. fairway to combined drought and pathogen stresses. Microorganisms. 8(Suppl 12):1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Overy DP, Cayouette J, Shoukouhi P, Hicks C, Bisson KR et al (2020) Four phylogenetic species of ergot from Canada and their characteristics in morphology, alkaloid production and pathogenicity. Mycologia 112(Suppl 5):974–988

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Shoukouhi P, Bisson KR, Wyka SA, Broders KD, Menzies JG (2021) Sympatric divergence of the ergot fungus, Claviceps purpurea, populations infecting agricultural and nonagricultural grasses in North America. Ecol Evol 11(Suppl 1):273–293

    Article  PubMed  Google Scholar 

  • Macchi-Borrell CC, Ayala-Aguilera L, Aquino A (2013) Evaluación fitosanitaria de semillas en diez especies forrajeras tropicales. Investigación Agraria 7(Suppl 2):5–9

    Google Scholar 

  • Marchi CE, Fernandes CD, Jerba VF, Borges MF, Lorenzetti ER (2005) Brachiaria brizantha: novo hospedeiro de Magnaporthe grisea. Past Trop 7(Suppl 2):52–54

    Google Scholar 

  • Marchi CE, Fernandes CD, Bueno ML, Batista MV, Fabris LR (2010) Fungos veiculados por sementes comerciais de braquiária. Arq Inst Biol 77:65–73

    Article  Google Scholar 

  • Martínez M, Arata AF, Fernández MD, Stenglein SA, Dinolfo MI (2021) Fusarium species richness in mono-and dicotyledonous weeds and their ability to infect barley and wheat. Mycological Prog 20(Suppl 9):1203–1216

    Article  Google Scholar 

  • Martins CC, Melo PD, Pereira FE, Anjos Neto AD, Nascimento LD (2017) Sanitary quality of Brachiaria brizantha cv. Marandú and Xaraés seeds harvested in different states in Brazil. Bioscience J. 33(Suppl 6):1431–1440

    Article  Google Scholar 

  • Mebalds MI, Price TV (2008) Chemical control of blind seed disease in perennial ryegrass (Lolium perenne) in Victoria. Austr Plant Pathol 37(Suppl 2):148–153

    Article  CAS  Google Scholar 

  • Mebalds MI, Price TV (2009) Studies on the relationships between blind seed symptoms, disease incidence and germination of Lolium perenne seed. Seed Sci Tech 37(Suppl 1):132–139

    Article  Google Scholar 

  • Mehboob S, Rehman A, Ali S, Idrees M, Zaidi SH (2015) Detection of wheat seed mycoflora with special referance to Drechslera sorokiniana. Pakistan J Phytopatol 27(Suppl 1):21–26

    Google Scholar 

  • Melo LF, Silva GZ, Panizzi RC, Martins CC (2017) Processing on the sanitary quality of seeds of Panicum maximum cv. ‘Tanzânia.’ Rev Bras Eng Agric Ambient. 21:715–720

    Article  Google Scholar 

  • Miedaner T, Geiger HH (2015) Biology, genetics, and management of ergot (Claviceps spp) in rye, sorghum, and pearl millet. Toxins 7(Suppl 3):659–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikaliūnienė J, Lemežienė N, Danytė V, Supronienė S (2015) Evaluation of red clover (Trifolium pratense L.) resistance to Sclerotinia crown and root rot (Sclerotinia trifoliorum) in the laboratory and field conditions. Zemdirbyste-Agric. 102(Suppl 2)

  • Mlay JA (2013) Screening buffelgrass (Cenchrus ciliaris) from selected pasture seed farms in Tanzania for seed-borne microorganism: pathogenicity and effect on germination. PhD Dissertation. Morogoro, Tanzania: Sokoine University of Agriculture

  • Mould MJ, Boland GJ, Robb J (1991) Ultrastructure of the Colletotrichum trifolii-Medicago sativa pathosystem. I. Pre-penetration events. Physiol. Mol. Plant Pathol. 38(Suppl 3):179–194

    Article  Google Scholar 

  • Nichea MJ, Palacios SA, Chiacchiera SM, Sulyok M, Krska R, Chulze SN et al (2015) Presence of multiple mycotoxins and other fungal metabolites in native grasses from a wetland ecosystem in Argentina intended for grazing cattle. Toxins 7(Suppl 8):3309–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichea MJ, Proctor RH, Probyn CE, Palacios SA, Cendoya E, Sulyok M et al (2022) Fusarium chaquense, sp. nov, a novel type A trichothecene–producing species from native grasses in a wetland ecosystem in Argentina. Mycologia 114(Suppl 1):46–62

    Article  CAS  PubMed  Google Scholar 

  • Nik WZ, Parbery DG (1977) Studies of seed-borne fungi of tropical pasture legume species. Austr J Agric Res 28(Suppl 5):821–841

    Article  Google Scholar 

  • O'Neill NR (1996) Pathogenic variability and host resistance in the Colletotrichum trifolii/Medicago sativapathosystem. Plant Dis. 80(Suppl 4):450–457

    Article  Google Scholar 

  • O’Rourke TA, Scanlon TT, Ryan MH, Wade LJ, McKay AC, Riley IT et al (2009) Severity of root rot in mature subterranean clover and associated fungal pathogens in the wheatbelt of Western Australia. Crop Pasture Sci 60(Suppl 1):43–50

    Article  Google Scholar 

  • Paseka RE, White LA, Van de Waal DB, Strauss AT, González AL, Everett RA et al (2020) Disease-mediated ecosystem services: Pathogens, plants, and people. Trends Ecol Evol 35(Suppl 8):731–743

    Article  PubMed  Google Scholar 

  • Penagos-Tabares F, Khiaosa-Ard R, Schmidt M, Pacífico C, Faas J, Jenkins T et al (2022) Fungal species and mycotoxins in mouldy spots of grass and maize silages in Austria. Mycot Res 38(Suppl 2):117–136

    Article  CAS  Google Scholar 

  • Pennycook SR (1989) Plant diseases recorded in New Zealand. Vol. 3. Auckland, New Zealand: Plant Diseases Division

  • Pérez LI, Gundel PE, Ghersa CM, Omacini M (2013) Family issues: fungal endophyte protects host grass from the closely related pathogen Claviceps purpurea. Fungal Ecol 6(Suppl 5):379–386

    Article  Google Scholar 

  • Píchová K, Pažoutová S, Kostovčík M, Chudíčková M, Stodůlková E, Novák P et al (2018) Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps). Mol Phyl Evol 123:73–87

    Article  Google Scholar 

  • Pottinger RP, Barbetti MJ, Ridsdill-Smith TJ (1993) Invertebrate pests, plant pathogens and beneficial organisms of improved temperate pastures. In: Proceedings of the XVII international grasslands congress, pp. 909–918

  • Pratt RG (2003) An excised-leaf inoculation technique for evaluating host-pathogen interactions and quantitative resistance of bermudagrass genotypes to dematiaceous hyphomycetes. Phytopathol 93(Suppl 12):1565–1571

    Article  CAS  Google Scholar 

  • Pratt RG (2005) Variation in occurrence of dematiaceous hyphomycetes on forage bermudagrass over years, sampling times, and locations. Phytopathol 95:1183–1190

    Article  CAS  Google Scholar 

  • Pratt RG (2006) Frequency and pathogenicity of dematiaceous hyphomycetes on annual ryegrass overseeded on bermudagrass in Mississippi. Plant Dis 90:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • Read JJ, Pratt RG (2012) Potassium influences forage Bermudagrass yield and fungal leaf disease severity in Mississippi. Forage Grazinglands 10(Suppl 1):1–11

    Article  Google Scholar 

  • Rioux RA, Shultz J, Garcia M, Willis DK, Casler M, Bonos S et al (2014) Sclerotinia homoeocarpa overwinters in turfgrass and is present in commercial seed. PLoS ONE 9(Suppl 10):e110897

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera MM, Ibarra-Flores F, Barrio-Cardenas P, Moreno-Medina S, Ibarra-Martin F, Retes-Lopez R, et al (2015) Leaf blast Pyricularia grisea effects on buffelgrass forage and seed production in Northwestern Mexico. In: The XXIII international grassland congress - sustainable use of grassland resources for forage production, biodiversity and environmental protection. New Delhi, India

  • Roane CW (2009) Graminicolous fungi of Virginia: Fungi in Collections 2004–2007. Va J Sci 60(Suppl 1):13–50. https://doi.org/10.25778/dpbh-d446

    Article  Google Scholar 

  • Salgado-Salazar C, Beirn LA, Ismaiel A, Boehm MJ, Carbone I, Putman AI et al (2018) Clarireedia: A new fungal genus comprising four pathogenic species responsible for dollar spot disease of turfgrass. Fungal Biol 122(Suppl 8):761–773

    Article  PubMed  Google Scholar 

  • Samac DA, Lamb JF, Kinkel LL, Hanson L (2013) Effect of wheel traffic and green manure treatments on forage yield and crown rot in alfalfa (Medicago sativa). Plant Soil 372(Suppl 1):349–359

    Article  CAS  Google Scholar 

  • Sapkota S, Catching KE, Raymer PL, Martinez-Espinoza AD, Bahri BA (2022) New approaches to an old problem: Dollar spot of turfgrass. Phytopathol 112(Suppl 3):469–480

    Article  CAS  Google Scholar 

  • Savchenko KG, Carris LM, Castlebury LA, Heluta VP, Wasser SP, Nevo E (2014) Stripe smuts of grasses: one lineage or high levels of polyphyly? Persoonia 33(Suppl 1):169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaman WL (1980) Ergot of grains and grasses. Agriculture Canada A53–1438:1–20

    Google Scholar 

  • Scott SW, Evans DR (1980) Sclerotinia trifoliorum Erikss on white clover (Trifolium repens L.). Grass Forage Sci. 35(Suppl 2):159–163

    Article  Google Scholar 

  • Scott SW, Evans DR (1984) Sclerotia of Sclerotinia trifoliorum in red clover seed. Trans Br Mycol Soc 82(Suppl 3):567–569

    Article  Google Scholar 

  • Sharma R, Gate VL, Madhavan S (2018) Evaluation of fungicides for the management of pearl millet [Pennisetum glaucum (L.)] blast caused by Magnaporthe grisea. Crop Prot. 112:209–213

    Article  CAS  Google Scholar 

  • Shoukouhi P, Hicks C, Menzies JG, Popovic Z, Chen W, Seifert KA et al (2019) Phylogeny of Canadian ergot fungi and a detection assay by real-time polymerase chain reaction. Mycologia 111(Suppl 3):493–505

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Sharma R, Chandra Nayaka S, Tara Satyavathi C, Raj C (2021) Understanding pearl millet blast caused by Magnaporthe grisea and strategies for its management. In: Blast disease of cereal crops, pp. 151–172. Springer, Cham

  • Sinha R, Irulappan V, Mohan-Raju B, Suganthi A, Senthil-Kumar M (2019) Impact of drought stress on simultaneously occurring pathogen infection in field-grown chickpea. Sci Rep 9(Suppl 1):1–15

    Google Scholar 

  • Skipp RA, Hampton JG (1996) Fungal and bacterial diseases of pasture plants in New Zealand. Pasture Forage Crop Pathol. 213–236.

  • Smiley RW, Dernoeden PH, Clarke BB (2005) Compendium of turfgrass diseases, 3rd edn. The American Phytopathological Society, St. Paul, MI, USA

    Book  Google Scholar 

  • Sher A, Nawaz A, Sarfraz M, Ijaz M, Ul-Allah S, Sattar A, Hussain S, Ahmad S (2019) Advanced production technologies of millets. Agronomic Crops. Springer, Singapore, pp 273–296

    Chapter  Google Scholar 

  • Stephens PM, Davoren CW (1997) Influence of the earthworms Aporrectodea trapezoides and A. rosea on the disease severity of Rhizoctonia solani on subterranean clover and ryegrass. Soil Biol Biochem. 29(Suppl 3–4):511–516

    Article  CAS  Google Scholar 

  • Supritha CT, Kumar V, Manjunatha N, Uppar DS, Rao MS (2020) Influence of seed processing methods and seed treatments on seed mycoflora of guinea (Panicum maximum) and para (Brachiaria mutica) grasses. Range Manag Agrofor 41(Suppl 1):99–107

    Google Scholar 

  • Torregrosa C, Cluzet S, Fournier J, Huguet T, Gamas P, Prospéri JM et al (2004) Cytological, genetic, and molecular analysis to characterize compatible and incompatible interactions between Medicago truncatula and Colletotrichum trifolii. Mol Plant Microbe Interac 17(Suppl 8):909–920

    Article  CAS  Google Scholar 

  • Tredway LP, Stevenson KL, Burpee LL (2005) Genetic structure of Magnaporthe grisea populations associated with St. Augustinegrass and tall fescue in Georgia. Phytopathol. 95(Suppl 5):463–471

    Article  CAS  Google Scholar 

  • Valent B, Farman M, Tosa Y, Begerow D, Fournier E, Gladieux P et al (2019) Pyricularia graminis-tritici is not the correct species name for the wheat blast fungus: response to Ceresini et al. (MPP 20: 2). Mol Plant Pathol. 20(Suppl 2):173

    Article  PubMed  PubMed Central  Google Scholar 

  • Vánky K (2012) Smut fungi of the world. American Phytopathological Society Press, St Paul, MN

    Google Scholar 

  • Varga Z, Krautzer B, Graiss W (2006) Comparative seed pathological investigations on cultivated grass species. In: 4th international plant protection symposium at Debrecen University and 11th trans-tisza plant protection forum, pp 233–239, Debrecen, Hungary

  • Victoria-Arellano AD, Guatimosim E, da Silva GM, Frank AK, Dallagnol LJ (2021) Fungi causing leaf spot diseases in Lolium multiflorum in Brazil. Mycol Prog 20(Suppl 9):1175–1190

    Article  Google Scholar 

  • Vincelli P, Dixon E, Farman M (2008) Susceptibility of selected cultivars of forage grasses to Magnaporthe oryzae isolates from annual ryegrass and relatedness of the pathogen to strains from other grasses. Forage Grazinglands 6(Suppl 1):1–6

    Article  Google Scholar 

  • Wakelin SA, Eslami Y, Dake K, Dignam BE, O’Callaghan M (2016) Cost of root disease on white clover growth in New Zealand dairy pastures. Austral Plant Pathol 45(Suppl 3):289–296

    Article  Google Scholar 

  • Wang JH, Qiao BK, Zhang GY, Liang YS, Bai Q, Han YZ (2020) Occurrence of Leaf Spot Associated with Alternaria alternata on White Clover in China. Plant Dis 104(Suppl 6):1865

    Article  Google Scholar 

  • Wiewióra B (2012) The effect of seed health of perennial ryegrass (Lolium perenne L.) on germination capacity. Plant Breed Seed Sci. 65:51–62

    Article  Google Scholar 

  • Wiewióra B, Martyniak D, Zurek G (2015) Seedborne mycoflora and germination of seeds of new bioenergy grass species, tall wheatgrass, and other cool-season grass species. Seed Sci Tech 43(Suppl 1):20–30

    Article  Google Scholar 

  • Wiewióra B (2011) Relationship between seedborne fungi of red fescue (Festuca rubra) and seed germination capacity. Phytopathologia 60:47–56. The Polish Phytopathological Society, Poznań 2011. ISSN 2081–1756

  • Wilkins PW (1973) Infection of Lolium and Festuca spp. by Drechslera siccans and D catenaria. Euphytica 22(Suppl 1):106–113

    Article  Google Scholar 

  • Wilson JP (2000) Pearl millet diseases: a compilation of information on the known pathogens of pearl millet: Pennisetum glaucum (L.) US Department of Agriculture, Agricultural Research Service

  • Wyka S, Broders K (2022) Brome grasses represent the primary source of Claviceps purpurea inoculum associated with barley fields in the San Luis Valley of Colorado. Canadian J Plant Pathol. https://doi.org/10.1080/07060661.2022.2091041

    Article  Google Scholar 

  • Xia C, Li N, Zhang Y, Li C, Zhang X, Nan Z (2018) Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: A review. Plant Dis 102(Suppl 11):2061–2073

    Article  PubMed  Google Scholar 

  • Xue L, Liu Y, Zhou S, White JF, Li C (2020) Characterization of Pyrenophora species causing brown leaf spot on Italian ryegrass (Lolium multiflorum) in southwestern China. Plant Dis 104(Suppl 7):1900–1907

    Article  CAS  PubMed  Google Scholar 

  • Yago JI, Roh JH, Bae SD, Yoon YN, Kim HJ, Nam MH (2011) The effect of seed-borne mycoflora from sorghum and foxtail millet seeds on germination and disease transmission. Mycobiology 39(Suppl 3):206–218

    Article  PubMed  PubMed Central  Google Scholar 

  • You MP, Barbetti MJ (2017) Environmental factors determine severity of Rhizoctonia damping-off and root rot in subterranean clover. Austral Plant Pathol 46(Suppl 4):357–368

    Article  Google Scholar 

  • You MP, Sivasithamparam K, Riley IT, Barbetti MJ (2000) The occurrence of root-infecting fungi and parasitic nematodes in annual Medicago spp. in Western Australian pastures. Austral J Agri Res. 51(Suppl 4):435–444

    Article  Google Scholar 

  • You MP, Lancaster B, Sivasithamparam K, Barbetti MJ (2008) Cross-pathogenicity of Rhizoctonia solani strains on pasture legumes in pasture-crop rotations. Plant Soil 302(Suppl 1):203–211

    Article  CAS  Google Scholar 

  • Yu W, Yu F-Y, Undersander DJ, Chu FS (1999) Immunoassays of Selected Mycotoxins in hay, silage and mixed feed. Food Agri Immunol 11:307–319

    Article  CAS  Google Scholar 

  • Zang Y, Han JG, Bolkan H, Shi QH (2006) The mycoflora of perennial ryegrass and their effects on the germination and seedling vigour. Seed Sci Technol 34:429–441

    Article  Google Scholar 

  • Zarza R, González S (2010) Uso de insecticidas y fungicidas curasemillas durante el almacenamiento y su efecto en la germinación y vigor de leguminosas forrajeras. In: Enfermedades y plagas en pasturas. INIA La Estanzuela: Editorial Hemisferio Sur

  • Zhang H, Zheng X, Zhang Z (2016) The Magnaporthe grisea species complex and plant pathogenesis. Mol Plant Pathol 17(Suppl 6):796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Zhang X, Li C, Christensen MJ, Nan Z (2015) Antifungal activity and phytochemical investigation of the asexual endophyte of Epichloë sp. from Festuca sinensis. China Life Sci. 58:821–826

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Illustration Designer Lucía Pérez Pizá who assisted us in the development of figures.

Funding

This work was supported by grants from Universidad del Salvador (80020210100015US).

Author information

Authors and Affiliations

Authors

Contributions

MCPP gathered the data and organized the literature. MCPP, GGS, and SS devised the review and wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to María Cecilia Pérez-Pizá.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Pizá, M.C., Striker, G.G. & Stenglein, S.A. Seed-borne diseases in pasture grasses and legumes: state of the art and gaps in knowledge. J Plant Dis Prot 130, 225–244 (2023). https://doi.org/10.1007/s41348-022-00703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-022-00703-7

Keywords

Navigation