Skip to main content
Log in

Phosphonates and SAR-trigger elicitors reducing the intensity of white mold in common bean

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

White mold caused by the fungus Sclerotinia sclerotiorum is one of the main common bean diseases. The aim of this study was to evaluate the effect of phosphonates and elicitors in reducing the severity of white mold. The experiment was carried out in a randomized block design with six treatments and six replications in a split-plot, where each experimental plot consisted of one bean plant. The treatments were acibenzolar-S-methyl—ASM (500 g L−1) 0.25 g L−1, chitosan (85% deacetylation) 50 mg L−1, fluazinam (500 g L−1) 120 g L−1, copper phosphite (275 g L−1) 250 g L−1, and copper ethylphosphonate (20% P2O5 + 1.75% S + 3.5% Cu) 5 mL L−1 and control. Inoculation was performed 28 DAS, and assessment of disease severity was conducted 8 days after inoculation (DAI) using a grade scale. The parameters evaluated were photosystem II (PSII) quantum yield (Fv/Fm) and total chlorophyll content 3, 6, and 9 days after application (DAA) of the chemicals and 3, 6, and 8 DAI. Statistical analyses were performed using R Statistical Software. The phytosanitary chemicals herein evaluated promoted lower intensity of S. sclerotiorum infection in common bean plants compared to the control. No decrease in chlorophyll content was observed, but there was a reduction in Fv/Fm values in inoculated plants compared with uninoculated plants caused by S. sclerotiorum infection, which resulted in damage to the photochemical step of photosynthesis. In this sense, the tested phosphonates and elicitors, especially ASM and copper ethylphosphonate, enhanced protection and reduced disease severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amselem J et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7(8):e1002230

    Article  CAS  Google Scholar 

  • Barros MCS (2007) Efeito do Cowpea severe mosaic virus na taxa fotossintética e na produtividade de plantas de caupi Vignaun guiculata L. (Walp) e avaliação da eficiência do acibenzolar-S-metil na indução de resistência ao mosaic severo. 2007. 43f. Rio Largo, Alagoas, Brasil, Universidade Federal de Alagoas, Dissertação Mestrado

  • Bolton MD et al (2006) Pathogen profile Sclerotinia sclerotiorum Lib. de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    Article  CAS  Google Scholar 

  • Chaum S, Kirdmanee C (2011) Remediation of salt-affected soil by the addition of organic matter: an investigation into improving glutinous rice productivity. Sci Agric 68(4):406–410

    Article  CAS  Google Scholar 

  • Clarkson JP et al (2004) Forecasting Sclerotinia disease on lettuce: toward developing a prediction model for carpogenic germination of sclerotia. Phytopathology 94:268–279

    Article  Google Scholar 

  • Conab (2018) Acompanhamento de Safra Brasileira de Grãos. Companhia Nacional de Abastecimento, Brasília

    Google Scholar 

  • Fagundes-Nacarath IRF, Debona D, Brás VV, Silveirs PR, Rodrigues FA (2018) Phosphites attenuate Sclerotinia sclerotiorum-induced physiological impairments in common bean. Acta Physiol Plant 40(11):198–212

    Article  Google Scholar 

  • Gadaga SJC et al (2017) Phosphites for the control of anthracnose in common bean. Pesq agropec bras, Brasília 52(1):36–44

    Article  Google Scholar 

  • Garcia FAO, Romeiro RS (2011) Biocontrole da mancha-angular do feijoeiro por antagonistas bacterianos. Pesq agropec bras, Brasília 46(12):1603–1608

    Article  Google Scholar 

  • Hegedus DD, Rimmer SR (2005) Sclerotinia sclerotiorum: when ‘‘to be or not to be’’ a pathogen? FEMS Microbiol Lett 251:177–184

    Article  CAS  Google Scholar 

  • Henderson CF, Tilton EW (1955) Tests with acaricides against the brown wheat mite. J Econ Entomol Baltimore 48(2):157–161

    Article  CAS  Google Scholar 

  • Jadão AS, Pavan MA, Krause-Sakate R, Zerbini FM (2001) Efeitos na fotossíntese e área foliar de cultivares de alface inoculadas mecanicamente com patótipos do Lettuce mosaic virus e Lettuc emottle virus. Fitopatol Bras 29(1):29–37

    Google Scholar 

  • Khodary SFA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in the salt stressed maize plants. Int J Agric Biol Eng 6:5–8

    CAS  Google Scholar 

  • Leite ME et al (2014) Biochemical responses associated with common bean defence against Sclerotinia sclerotiorum. Eur J Plant Pathol 138:391–404

    Article  CAS  Google Scholar 

  • Mcdonald MR, Boland GJ (2004) Forecasting diseases caused by Sclerotinia spp. in eastern Canada: fact or fiction? Can J Plant Pathol 26:480–488

    Article  Google Scholar 

  • Miklas PN et al (2013) Characterization of white mold disease avoidance in common bean. Eur J Plant Pathol 135:525–543

    Article  Google Scholar 

  • Oliveira MB et al (2015) Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum—Phaseolus vulgaris interaction. Front Microbiol 6:1–14

    CAS  Google Scholar 

  • Pascholati SF, Leite B (1995) Hospedeiro: mecanismos de resistência. In: Bergamin Filho A, Kimati H, Amorim L (ed). Manual de fitopatologia: princípios e Conceitos. São Paulo, Agronômica Ceres, vol 1, pp 417–453

  • Rodrigues AAC et al (2006) Indução de resistência a Fusarium oxysporum f. sp. tracheiphilum em caupi: eficiência de indutores abióticos e atividade enzimática elicitada. Fitopatologia Brasileira 31:492–499

    Article  Google Scholar 

  • Schwartz HF, Singh SP (2013) Breeding common bean for resistance to WhiteMold: a review. Crop Sci 53:1832–1844

    Article  Google Scholar 

  • Schwartz HF, Steadman JR (1989) Mofo branco. In: Schwartz HF, Pastor Corrales MA (eds) Problemas de produção de feijão nos trópicos, 2ª edn. CIAT, Cali, pp 211–230

    Google Scholar 

  • Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50:2199–2223

    Article  Google Scholar 

  • Siqueira ITD, Cruz LR, Souza-Motta CM, Medeiros EV, Moreira KA (2019) Indução de resistência por acibenzolar-S-metil em feijão caupi no controle da antracnose. Summa Phytopathol 45(1):76–82

    Article  Google Scholar 

  • Smillie R, Grant BR, Guest D (1989) The mode of action of phosphite: evidence for both direct and indirect modes of action on three Phytophthora spp in plants. Phytopathology 79(9):921–926

    Article  CAS  Google Scholar 

  • Sobrinho CA (2005) Indutores abióticos. In: Cavalcanti LS, Di Piero RM, Cia P, Pascholati SF, Resende MLV, Romeiro RS (eds) Indução de Resistência em Plantas a Patógenos e Insetos. FEALQ, Piracicaba, pp 51–80

    Google Scholar 

  • Terán H, Singh SP (2009) Efficacy of three greenhouse screening methods for the identification of physiological resistance to white mold in dry bean. Can J Plant Sci 89:755–762

    Article  Google Scholar 

  • Tofoli JG (2011) Ação de fungicidas e indutores de resistência no controle da requeima e pinta preta na cultura da batata. 40f. Tese (Doutorado em Fitotecnia)—Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP

  • Vieira RF et al (2010) White mold management in common bean by increasing within-row distance between plants. Plant Dis 94:361–367

    Article  CAS  Google Scholar 

  • Vieira RF et al (2012) Management of white mold in type III common bean with plant spacing and fungicide. Trop Plant Pathol 37:95–101

    Google Scholar 

  • Vigo SC et al (2012) Evaluation of pyraclostrobin and acibenzolar-S-methyl on common bacterial blight of snap bean. Semina: Ciênc Agrár, Londrina 33(1):167–174

    CAS  Google Scholar 

  • Yang C, Zhang Z, Gao H, Liu M, Fan X (2014) Mechanisms by which the infection of Sclerotinia sclerotiorum (Lib.) de Bary effects the photosynthetic performance. Plant Biol 14:11

    Google Scholar 

  • Zhou F et al (2014) Stimulatory effects of sublethal doses of dimethachlon on Sclerotinia sclerotiorum. Plant Dis 98:1364–1370

    Article  CAS  Google Scholar 

  • Zhou J, Zeng L, Liu J, Xing D (2015) Manipulation of the xanthophyll cycle increases plant susceptibility to Sclerotinia sclerotiorum. PLoS Pathog 11(5):25

    Article  Google Scholar 

Download references

Funding

There was no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willian Bucker Moraes.

Ethics declarations

Conflict of interest

The authors confirm that the manuscript has been prepared in accordance with the COPE ethical guidelines and there is no conflict of interest. Author Adonis Lopes Tonoli declares that he has no conflict of interest. Author Breno Benvindo dos Anjos declares that he has no conflict of interest. Author Guilherme de Resende Camara declares that he has no conflict of interest. Author Leonardo Humberto Silva e Castro declares that he has no conflict of interest. Author Jéssica Priscila Pereira declares that she has no conflict of interest. Author Paulo Cezar Cavatte declares that he has no conflict of interest. Author André da Silva Xavier declares that he has no conflict of interest. Author Willian Bucker Moraes declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonoli, A.L., dos Anjos, B.B., Belan, L.L. et al. Phosphonates and SAR-trigger elicitors reducing the intensity of white mold in common bean. J Plant Dis Prot 128, 273–278 (2021). https://doi.org/10.1007/s41348-020-00391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-020-00391-1

Keywords

Navigation