Skip to main content
Log in

Inoculative release strategies of Macrolophus pygmaeus Rambur (Hemiptera: Miridae) in tomato crops: population dynamics and dispersal

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Macrolophus pygmaeus Rambur (Hemiptera: Miridae) is a key biological control agent in greenhouse tomato crops. In the present study, we describe the population dynamics of M. pygmaeus after release during two generations in semi-commercial greenhouses in order to optimize biocontrol programs. We tested the effect of the number of weekly supplementary food applications consisting of a mixture of Ephestia kuehniella Zeller and Artemia franciscana Kellogg in a tomato crop on population numbers of M. pygmaeus at low and high initial release densities of the predator. Also, the effect of supplementary feeding on the predator’s dispersal was studied. Larger population densities of M. pygmaeus were obtained when food was supplied for a longer period. However, we observed fruit damage by M. pygmaeus at high densities resulting from too frequent food applications. Also, dispersal was slowed down as the number of supplementary food applications increased. Distributing M. pygmaeus over more plants at release results in higher total population densities. The optimal inoculative release strategy of M. pygmaeus is a trade-off between high population densities and fruit damage, fast or slow dispersal throughout the greenhouse and the number of release plants and work/costs related to the supplementation of food. The optimal strategy to overcome negative effects like fruit damage, slow dispersal and potential cannibalism proved to be a weekly provision of supplementary food during 6–8 weeks, with an initial release density strategy of 20 M. pygmaeus adults per plant. These results contribute to a more sustainable tomato production. A reliable and efficient inoculative release strategy for the key predator M. pygmaeus enhances the biocontrol potential and is of great value for tomato growers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alomar, O., Riudavets, J., & Castañe, C. (2006). Macrolophus caliginosus in the biological control of Bemisia tabaci on greenhouse melons. Biological Control, 36, 154–162.

    Article  Google Scholar 

  2. Arnó, J., & Gabarra, R. (2011). Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). Journal of Pest Science, 84, 513–520.

    Article  Google Scholar 

  3. Blaeser, P., Sengonca, C., & Zegula, T. (2004). The potential use of different predatory bug species in the biological control of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Journal of Pest Science, 77, 211–219.

    Article  Google Scholar 

  4. Calvo, F. J., Lorente, M. J., Stansly, P. A., & Belda, J. E. (2012). Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisia tabaci in greenhouse tomato. Entomologia Experimentalis et Applicata, 143, 111–119.

    Article  Google Scholar 

  5. Castañé, C., Alomar, O., Goula, M., & Gabarra, R. (2004). Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biological Control, 30, 591–597.

    Article  Google Scholar 

  6. Enkegaard, A., Brodsgaard, H. F., & Hansen, D. L. (2001). Macrolophus caliginosus: Functional response to whiteflies and preference and switching capacity between whiteflies and spider mites. Entomologia Experimentalis et Applicata, 101, 81–88.

    Article  Google Scholar 

  7. De Clercq, P., Coudron, T. A., & Riddick, E. W. (2014). Production of heteropteran predators. In J. A. Morales-Ramos, G. Rojas, & D. Shapiro-Ilan (Eds.), Mass production of beneficial organisms: Invertebrates and entomopathogens (pp. 57–100). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  8. Hamdi, F., Chadoeuf, J., & Bonato, O. (2013). Functional relationship between plant feeding and prey feeding for a zoophytophagous bug. Physiological Entomology, 38, 241–245.

    Article  Google Scholar 

  9. Hamdi, F., Chadoeuf, J., Chermiti, B., & Bonato, O. (2013). Evidence of cannibalism in Macrolophus pygmaeus, a natural enemy of whiteflies. Journal of Insect Behavior, 26, 614–621.

    Article  Google Scholar 

  10. Ingegno, B. I., Pansa, M. G., & Tavella, L. (2011). Plant preference in the zoophytophagous generalist predator Macrolophus pygmaeus (Heteroptera: Miridae). Biological Control, 58, 174–181.

    Article  Google Scholar 

  11. Laycock, A., Camm, E., Van Laerhoven, S., & Gillespie, D. (2006). Cannibalism in a zoophytophagous omnivore is mediated by prey availability and plant substrate. Journal of Insect Behavior, 19, 219–229.

    Article  Google Scholar 

  12. Lenfant, C., Ridray, G., & Schoen, L. (2000). Biopropagation of Macrolophus caliginosus Wagner for a quicker establishment in Southern tomato greenhouses. IOBC/WPRS Bulletin, 23, 247–251.

    Google Scholar 

  13. Lykouressis, D. P., Perdikis, D., & Michalaki, M. (2001). Nymphal development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae) on two eggplant varieties as affected by temperature and presence/absence of prey. Biological Control, 20, 222–227.

    Article  Google Scholar 

  14. Lykouressis, D., Giatropoulos, A., Perdikis, D., & Favas, C. (2008). Assessing the suitability of non-cultivated plants and associated insect prey as food sources for the omnivorous predator Macrolophus pygmaeus (Hemiptera: Miridae). Biological Control, 44, 142–148.

    Article  Google Scholar 

  15. Moerkens, R., Berckmoes, E., Van Damme, V., Ortega-Parra, N., Hanssen, I., Wutack, M., et al. (2015). High population densities of Macrolophus pygmaeus on tomato plants can cause economic fruit damage: Interaction with Pepino mosaic virus? Pest Management Science, 72, 1350–1358.

    Article  PubMed  Google Scholar 

  16. Moreno-Ripoll, R., Agustí, N., Berruezo, R., & Gabarra, R. (2012). Conspecific and heterospecific interactions between two omnivorous predators on tomato. Biological Control, 62, 189–196.

    Article  Google Scholar 

  17. Perdikis, D., & Lykouressis, D. (2000). Effects of various items, host plants, and temperatures on the development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Biological Control, 17, 55–60.

    Article  Google Scholar 

  18. Perdikis, D., & Lykouressis, D. (2002). Life table and biological characteristics of Macrolophus pygmaeus when feeding on Myzus persicae and Trialeurodes vaporariorum. Entomologia Experimentalis et Applicata, 102, 261–272.

    Article  Google Scholar 

  19. Polis, G. A. (1981). The evolution and dynamics of intraspecific predation. Annual Review of Ecology and Systematics, 12, 225–251.

    Article  Google Scholar 

  20. Portillo, N., Alomar, O., & Wäckers, F. (2012). Nectarivory by the plant-tissue feeding predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae): Nutritional redundancy or nutritional benefit? Journal of Insect Physiology, 58, 397–401.

    Article  CAS  PubMed  Google Scholar 

  21. Put, K., Bollens, T., Wäckers, F. L., & Pekas, A. (2012). Type and spatial distribution of food supplements impact population development and dispersal of the omnivore predator Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae). Biological Control, 63, 172–180.

    Article  Google Scholar 

  22. Schoen, L., Ridday, G., & Lenfant, C. (2000). Side effects of different insecticides on egg hatching of the predator bug Macrolophus caliginosus (Wagner). Integrated control in Viticulture. IOBC/WPRS Bulletin, 22, 99–101.

    Google Scholar 

  23. Urbaneja, A., Montón, H., & Mollá, O. (2008). Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. Journal of Applied Entomology, 133, 292–296.

    Article  Google Scholar 

  24. van Lenteren, J. (2012). The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57, 1–20.

    Article  Google Scholar 

  25. Wade, M. R., Zalucki, M. P., Wratten, S. D., & Robinson, K. A. (2008). Conservation biological control of arthropods using artificial food sprays: Current status and future challenges. Biological Control, 45, 185–199.

    Article  Google Scholar 

Download references

Acknowledgements

The Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT) financed this study. The research Project 100888 was granted to Proefstation voor de Groenteteelt (R. De Vis and L. Wittemans) in cooperation with Proefcentrum Hoogstraten, Ghent University and the Institute for Agricultural and Fisheries Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Moerkens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moerkens, R., Berckmoes, E., Van Damme, V. et al. Inoculative release strategies of Macrolophus pygmaeus Rambur (Hemiptera: Miridae) in tomato crops: population dynamics and dispersal. J Plant Dis Prot 124, 295–303 (2017). https://doi.org/10.1007/s41348-017-0077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-017-0077-9

Keywords

Navigation