Skip to main content

Advertisement

Log in

Efficacy of copper alternatives applied as stop-sprays against Plasmopara viticola in grapevine

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The six products, Armicarb, Vitisan, lime sulphur, Caso, Calce Fiocco and Ulmasud, were tested for their ability to control downy mildew (Plasmopara viticola) on grapevine (Vitis vinifera) in order to find effective alternatives to copper, a heavy metal that is commonly used as a fungicide in organic viticulture. Each product was applied to potted grapevines at (1) 40° h (degree hours) and (2) 80° h after inoculation (ai) of the pathogen. These so-called stop-sprays were tested on plants that received two different P. viticola inoculum rates. The formulated potassium bicarbonate product Armicarb and lime sulphur reduced disease incidence and severity similar to or better than the copper hydroxide treatment. Armicarb and lime sulphur reduced disease incidence by up to 46 and 22 %, respectively, and disease severity by up to 73 and 77 %, respectively. However, observed effects were depending on both inoculum rates and time of application. Overall, the results indicate that the tested products showed higher efficacy when applied 40° h ai and when the pathogen was applied at the high inoculum rate, however, that was not always the case. The unformulated potassium bicarbonate product Vitisan and other products based on calcium chloride, calcium hydroxide and acid clay did not reliably affect disease incidence and severity. Possible roles of inoculum density, wetting agents and sprinkler usage during the infection procedure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

°h:

Degree hours

ai:

After inoculation

DLA:

Diseased leaf area

References

  1. Reisenzein H, Polesny F, Höbaus E (2008) Krankheiten, Schädlinge und Nützlinge im Weinbau. Österreichischer Agrarverlag, Wien

    Google Scholar 

  2. Hofmann U (2003b) Copper reduction and replacement in organic viticulture: results of eleven years of round robin tests. In: Alternativen zur Anwendung von Kupfer als Pflanzenschutzmittel. Saphir, Ribbesbüttel. Berichte aus der Biologischen Bundesanstalt 118, pp 27–37

  3. Schmidt-Tiedemann A, Ebersberger D, Köglmeier W (2003) Status Quo of organic viticulture in Germany: structure, development, problems. Bundesanstalt für Landwirtschaft und Ernährung, Geschäftsstelle Bundesprogramm Ökologischer Landbau, Bonn. www.orgprints.org. 17 Feb 2015

  4. Wilbois KP, Kauer R, Fader B, Kienzle J, Haug P, Fritzsche-Martin A, Drescher N, Reiners E, Röhrig P (2009) Kupfer als Pflanzenschutzmittel unter besonderer Berücksichtigung des Ökologischen Landbaus. J für Kulturpflanzen 61(4):140–152

    CAS  Google Scholar 

  5. BVL (Bundesamt für Verbraucherschutz und Lebensmittelsicherheit), (2015) Zugelassene Pflanzenschutzmittel. Auswahl für den ökologischen Landbau nach der Verordnung (EG) Nr. 834/2007. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Braunschweig. www.bvl.bund.de. 17 Feb 2015

  6. Innerebner G, Roschatt C (2014) Kupferpräparate im Test. Südtirol Landwirt 7:1–3

    Google Scholar 

  7. Steindl A, Riepert F, Strumpf T (2010) Kupfer- und andere Schwermetallverbindungen in Weinbergsböden und ihre Auswirkungen auf die Bodenzönose. Ber Jul Kühn-Institut 157:13–14

    Google Scholar 

  8. BÖLW (2010) Strategiepapier zu Kupfer als Pflanzenschutzmittel unter besonderer Berücksichtigung des Ökologischen Landbaus. Bund Ökologischer Lebensmittelwirtschaft, Berlin. http://kupfer.jki.bund.de. 17 Feb 2015

  9. Jänsch S, Römbke J (2009) Einsatz von Kupfer als Pflanzenschutzmittel-Wirkstoff: Ökologische Auswirkungen der Akkumulation von Kupfer im Boden. Research report 360 03040. Umweltbundesamt für Mensch und Umwelt, Dessau-Roßlau. http://kupfer.jki.bund.de. 17 Feb 2015

  10. Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102:151–161

    Article  CAS  Google Scholar 

  11. Rusjan D, Strlič M, Pucko D, Korošec-Koruza Z (2007) Copper accumulation regarding the soil characteristics in sub-Mediterranean vineyards of Slovenia. Geoderma 141:111–118

    Article  CAS  Google Scholar 

  12. Strumpf T, Steindl A, Strassemeyer J, Riepert F (2011) Erhebung von Kupfergesamtgehalten in ökologisch und konventionell bewirtschafteten Böden. Teil 1: Gesamtgehalten in Weinbergsböden deutscher Qualitätsanbaugebiete. J für Kulturpflanzen 63(5):131–143

    CAS  Google Scholar 

  13. Hofmann U (2009) Optimierung der Peronospora, Plasmopara viticola Bekämpfung im ökologischen Weinbau: Pflanzenbauliche Maßnahmen, Kupferreduzierung, Einsatz von Kupferalternativen. BIO-AUSTRIA, St. Pölten, 26–27 Feb 2009

  14. Kühne S, Nürnberg M, Rahmann G, Töpfer A (2012) Kupferhaltige Pflanzenschutzmittel: Perspektiven. Ökol Landbau 1:6–7

    Google Scholar 

  15. Nannen DU, Riecken I, Lehne J (2010) Technical copper minimising strategies to keep an old friend going. In: Proceedings of the Ecofruit 2010: 14th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, 22–24 Feb 2010, pp 45–51

  16. Pertot I, El Bilali H, Simeon V, Vecchione A, Zulini L (2006) Efficacy evaluation and phytotoxicity assessment of traditional and new copper compounds used in copper reduction strategies in organic viticulture in northern and southern Italy environments. Integr Prot Vitic IOBC/WPRS Bull 29(11):61–65

    Google Scholar 

  17. Dagostin S, Schärer HJ, Pertot I, Tamm L (2011) Are there alternatives to copper for controlling grapevine downy mildew in organic viticulture? Crop Prot 20:776–788

    Article  Google Scholar 

  18. La Torre A, Mandalá C, Caradonia F, Battaglia V (2011) Pluriennal trials for the control of grapevine downy mildew with natural products. In: Proceedings of the PAV: 17th GIESCO Meeting, Alba-Alba, pp 107–110

  19. La Torre A, Talocci S, Spera G, Valori R (2008) Control of downy mildew on grapes in organic viticulture. Commun Agric Appl Biol Sci 73(2):169–178

    PubMed  Google Scholar 

  20. Schilder AMC, Gillett JM, Sysak RW, Wise JC (2002) Evaluation of environmentally friendly products for control of fungal diseases of grapes. In: Proceedings of the Ecofruit: 10th international conference on cultivation technique and phytopathological problems in organic fruit-growing and viticulture, Weinsberg, Germany, 4–7 Feb 2002, pp 163–167

  21. Dorn B, Musa T, Krebs H, Men Fried P, Forrer HR (2007) Control of late blight in organic potato production: evaluation of copper-free preparations under field, growth chamber and laboratory conditions. Eur J Plant Pathol 119(2):217–240

    Article  Google Scholar 

  22. Kelderer M, Lardschneider E, Casera C (2008) Formulated and unformulated carbonates to control apple scab (Venturia inaequalis) on organic apple. In: Proceedings of the Ecofruit 2008: 13th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, 18–20 Feb 2008, pp 47–53

  23. Hofmann U (2003a) On field trials to optimize the downy and powdery mildew control in organic viticulture: alternative strategies to copper and sulfur use. Final report. ECO-CONSULT—Internationale Beratung im ökologischen Weinbau, Geisenheim. www.orgprints.org. 17 Feb 2015

  24. Holb IJ, De Jong PF, Heijne B (2003) Efficacy and phytotoxicity of lime sulphur in organic apple production. Ann Appl Biol 142(2):225–233

    Article  CAS  Google Scholar 

  25. Kopp B (2004) Reduction of the ascospore potential by calcium. In: Proceedings of the Ecofruit 2004: 11th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, 3–5 Feb 2004, pp 85–86

  26. Weitbrecht K, Schmidt C, Kassemeyer HH (2014) Reduction of copper containing plant protection products in ecological viticulture: investigation of innovative copper formulation with high reduction potential and development of stringent strategies for their use. Final report. Staatliches Weinbauinstitut Freiburg

  27. Kassemeyer HH (2003) Erarbeitung von wissenschaftlichen Ansätzen zur biologischen Kontrolle der Rebenperonospora und für Strategien zu deren Regulierung im ökologischen Weinbau. Final report. Bundesanstalt für Landwirtschaft und Ernährung (BLE), Geschäftsstelle Bundesprogramm Ökologischer Landbau, Bonn

  28. Kelderer M, Lardschneider E, Casera C (1997) Schorfregulierung: Verschiedene Kupferformulierungen. Alternativen zum Kupfer: gezielte Behandlung. In: Proceedings of the Ecofruit 1997: 8th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, 13–14 Nov 1997, pp 9–14

  29. Kelderer M, Lardschneider E, Casera C (2000) Zwei Jahre Erfahrungen mit der gezielten Schorfbekämpfung durch die Oberkronenberegnung. In: Proceedings of the 9 Internationale Erfahrungsaustausch über Forschungsergebnisse zum Ökologischen Obstbau, Weinsberg, pp 5–11

  30. Kunz S, Mögel G, Hinze M, Volk F (2008) Control of apple scab by curative applications of biocontrol agents. In: Proceedings of the Ecofruit 2008: 13th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, 18–20 Feb 2008, pp 62–67

  31. Denzer H (1991) Resistenz von Rebsorten gegen Plasmopara viticola. Ph.D. thesis, Gießen University

  32. Roschatt C, Haas E (2009) Kurative Wirkung verschiedener Präparate gegen Peronospora auf Topfreben. Obstbau/Weinbau 46(4):156–158

    Google Scholar 

  33. Unterstenhöfer G (1963) Die Grundlagen des Pflanzenschutz-Freilandversuches. Pflanzenschutznachrichten “Bayer”, Leverkusen

  34. Olsen CH (2003) Review of the use of statistics in infection and immunity. Infect Immun 71:6689–6692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stähler Swiss (2015) Armicarb. Technical sheet. www.staehler.ch. 03 Sept 2015

  36. Börner H (2009) Pflanzenkrankheiten und Pflanzenschutz. Axel Springer, Berlin

    Book  Google Scholar 

  37. Stark-Urnau M, Seidel M, Kast WK, Gemmerich AR (2010) Studies on the genetic diversity of primary and secondary infections of P. viticola using RADP/PCR. Vitis 39(4):163–166

    Google Scholar 

  38. Kast WK (2000) Investigations on the effect of extremely low copper doses and different copper formulations. In: Willer H, Meier U (ed) 2000: proceedings of the 6th international congress on organic viticulture, Basel, 25–26 Aug 2000, SÖL special issue 77, pp 175–176

Download references

Acknowledgments

We thank Christian Roschatt (Research Centre Laimburg) for technical support. This work was funded within the CO-FREE project of the EU’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 289497 and financially supported by the Research Centre Laimburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukas, K., Innerebner, G., Kelderer, M. et al. Efficacy of copper alternatives applied as stop-sprays against Plasmopara viticola in grapevine. J Plant Dis Prot 123, 171–176 (2016). https://doi.org/10.1007/s41348-016-0024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-016-0024-1

Keywords

Navigation