Skip to main content
Log in

Intelligent bimanual rehabilitation robot with fuzzy logic based adaptive assistance

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Functional recovery of an impaired limb could be achieved effectively using rehabilitation robots. Most studies focus on unilateral robots. However, bimanual rehabilitation robots promote inter-limb coordination which is specially useful for stroke patients. Existing rehabilitation machines designed for resistance training do not follow the profile of the human arm torque curve as for the human biomechanics. Therefore the resistance exercise may become an inefficient workout as the patient may use biomechanical advantage at certain angles. Ideally, a rehabilitation robot should provide low impedance or assistance when the patient is unable to work against the resistance. This paper proposes a novel impedance controlled bimanual robot with fuzzy logic based adaptive assistance. The proposed controller is tested with two options. Torque is controlled using the Reaction Torque Observer (RTOB). Results show the applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abeykoon, A.H.S., Ruwanthika, R.M.: Remote gripping for effective bilateral teleoperation. In: Handbook of Research on Human-Computer Interfaces, Developments, and Applications, pp. 99–134. IGI Global (2016)

  • Babaiasl, M., Mahdioun, S.H., Jaryani, P., Yazdani, M.: A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 11(4), 263–280 (2016)

    Google Scholar 

  • Carroll, T.J., Benjamin, B., Stephan, R., Carson, R.G.: Resistance training enhances the stability of sensorimotor coordination. Proc. R. Soc. Lond. B 268(1464), 221–227 (2001)

    Article  Google Scholar 

  • Cauraugh, J.H., Summers, J.J.: Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Prog. Neurobiol. 75(5), 309–320 (2005)

    Article  Google Scholar 

  • Chinthaka, M.D., Abeykoon, A.H.S.: Friction compensation of dc motors for precise motion control using disturbance observer. ECTI Trans. Comput. Inf. Technol. 9(1), 74–82 (2015)

    Google Scholar 

  • Erol, D., Mallapragada, V., Sarkar, N., Uswatte, G., Taub, E.: Autonomously adapting robotic assistance for rehabilitation therapy. In: Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference on, pp. 567–572. IEEE (2006)

  • Folland, J., Morris, B.: Variable-cam resistance training machines: do they match the angle-torque relationship in humans? J. Sports Sci. 26(2), 163–169 (2008)

    Article  Google Scholar 

  • Harischandra, P.D., Abeykoon, A.H.S.: Development of an upper limb master-slave robot for bimanual rehabilitation. In: Engineering Research Conference (MERCon), 2017 Moratuwa, pp. 52–57. IEEE (2017)

  • Herrnstadt, G., Alavi, N., Randhawa, B.K., Boyd, L.A., Menon, C.: Bimanual elbow robotic orthoses: preliminary investigations on an impairment force-feedback rehabilitation method. Front Human Neurosci. 9 (2015)

  • Ju, M.S., Lin, C.C., Lin, D.H., Hwang, I.S., Chen, S.M.: A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 349–358 (2005)

    Article  Google Scholar 

  • Just, F., Baur, K., Riener, R., Klamroth-Marganska, V., Rauter, G.: Online adaptive compensation of the armin rehabilitation robot. In: Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference on, pp. 747–752. IEEE (2016)

  • Kanelov, I., Koroleova, G., Milanov, P., Pencheva, N.: Impact of the joint angular position on the peak torque of elbow flexors and extensors in healthy males. Res Kinesiol44(1) (2016)

  • Kang, N., Cauraugh, J.H.: Force control improvements in chronic stroke: bimanual coordination and motor synergy evidence after coupled bimanual movement training. Exp Brain Res 232(2), 503–513 (2014)

    Article  Google Scholar 

  • Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller. In: IEEE Transactions on systems, man, and cybernetics 20(2), 404–418 (1990)

  • Li, C., Inoue, Y., Liu, T., Shibata, K., Oka, K.: A new master-slave control method for implementing force sensing and energy recycling in a bilateral arm training robot. Int. J. Innovat. Comput. 7(1), 471–485 (2011)

    Article  Google Scholar 

  • Li, Z., Huang, B., Ajoudani, A., Yang, C., Su, C.Y., Bicchi, A.: Asymmetric bimanual control of dual-arm exoskeletons for human-cooperative manipulations. IEEE Trans. Robot. 34(1), 264–271 (2018)

    Article  Google Scholar 

  • Liu, T., Li, C., Inoue, Y., Shibata, K.: Reaction force/torque sensing in a master-slave robot system without mechanical sensors. Sensors 10(8), 7134–7145 (2010)

    Article  Google Scholar 

  • Mangine, G.T., Hoffman, J.R., Gonzalez, A.M., Townsend, J.R., Wells, A.J., Jajtner, A.R., Beyer, K.S., Boone, C.H., Miramonti, A.A., Wang, R., et al.: The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiological reports 3(8), e12,472 (2015)

  • Morante, S., Victores, J.G., Martínez, S., Balaguer, C.: Force-sensorless friction and gravity compensation for robots. In: Robot 2015: Second Iberian Robotics Conference, pp. 57–68. Springer (2016)

  • Ouellette, M.M., LeBrasseur, N.K., Bean, J.F., Phillips, E., Stein, J., Frontera, W.R., Fielding, R.A.: High-intensity resistance training improves muscle strength, self-reported function, and disability in long-term stroke survivors. Stroke 35(6), 1404–1409 (2004)

    Article  Google Scholar 

  • Perera, G.A., Pillai, M.B., Harsha, A., Abeykoon, S.: Dc motor inertia estimation for robust bilateral control. In: Information and Automation for Sustainability (ICIAfS), 2014 7th International Conference on, pp. 1–7. IEEE (2014)

  • Rehmat, N., Zuo, J., Meng, W., Liu, Q., Xie, S.Q., Liang, H.: Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. International Journal of Intelligent Robotics and Applications pp. 1–13 (2018)

  • Richards, L.G., Senesac, C.R., Davis, S.B., Woodbury, M.L., Nadeau, S.E.: Bilateral arm training with rhythmic auditory cueing in chronic stroke: not always efficacious. Neurorehabil. Neural Repair 22(2), 180–184 (2008)

    Article  Google Scholar 

  • Rose, D.K., Winstein, C.J.: Bimanual training after stroke: are two hands better than one? Top. Stroke Rehabil. 11(4), 20–30 (2004)

    Article  Google Scholar 

  • Saadatzi, M., Long, D.C., Celik, O.: Torque estimation in a wrist rehabilitation robot using a nonlinear disturbance observer. In: ASME 2015 Dynamic Systems and Control Conference, pp. V001T18A001–V001T18A001. American Society of Mechanical Engineers (2015)

  • Tappeiner, L., Ottaviano, E., Husty, M.L.: A cable-driven robot for upper limb rehabilitation inspired by the mirror therapy. In: Computational Kinematics, pp. 174–181. Springer (2018)

  • Trlep, M., Mihelj, M., Puh, U., Munih, M.: Rehabilitation robot with patient-cooperative control for bimanual training of hemiparetic subjects. Adv. Robot. 25(15), 1949–1968 (2011)

    Article  Google Scholar 

  • Van Delden, A., Peper, C., Beek, P.J., Kwakkel, G.: Unilateral versus bilateral upper limb exercise therapy after stroke: a systematic review. J. Rehabil. Med. 44(2), 106–117 (2012)

    Article  Google Scholar 

  • Waller, S.M., Whitall, J.: Bilateral arm training: why and who benefits? Neuro Rehabil. 23(1), 29–41 (2008)

    Google Scholar 

  • Zadeh, L.A.: Fuzzy logic= computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Diluka Harischandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harischandra, P.A.D., Abeykoon, A.M.H.S. Intelligent bimanual rehabilitation robot with fuzzy logic based adaptive assistance. Int J Intell Robot Appl 3, 59–70 (2019). https://doi.org/10.1007/s41315-019-00080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-019-00080-9

Keywords

Navigation