Skip to main content

Advertisement

Log in

Laser microdissection: sample preparation and applications

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

Laser microdissection (LM) is a rapid, easy, one-step, and efficient method of conserving and isolating single cell or cell clusters from fixed tissue sections under direct microscopic visualization. LM is currently the only method that can be used to isolate homogeneous cells from heterogeneous tissue. This method was first developed for tumor analysis. Multiple generations of LM instruments are available on the market. For instance, the Veritas™ microdissection combines the LM system based on the IR with UV laser cutting. The desired cells can be harvested specific and wanted cells can be harvested directly by cutting target cells abroad from unwanted cells. The extracted cells are then utilized in various disciplines of experimental and clinical biology, such as genomic analysis and proteomics. LM is a an efficient and powerful tool that facilitates the analysis of small amounts of molecules isolated from a complex tissue, thus offering new opportunities to understand physiological and fundamental processes. Here, we describe a method of preparing paraffin sections of maize roots for laser microdissection to three parts (stele, cortex and outer layers) by LM using a microwave embedding method. This approach allows RNA to be extracted from each type of tissue separately. The RNA integrity of our samples following LM ranged between 7 and 7.2, indicating that this RNA can be reliably used for further analysis. The work reported in this paper highlights how advances in protocols and methods have made LM a powerful and sometimes essential tool for genomic and proteomic analyses of tiny amounts of biomolecules extracted from a few cells isolated from a complex tissue in their physiological context, thus offering a new pathway to understand fundamental, physiological and/or patho-physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bevilacqua C, Ducos B (2017) Laser microdissection: a powerful tool for genomics at cell level. Mol Aspects Med 59:5–27

    Article  Google Scholar 

  • Burbach GJ, Dehn D, Del Turco D, Deller T (2003) Quantification of layer-specific gene expression in the hippocampus: effective use of laser microdissection in combination with quantitative RT-PCR. J Neurosci Methods 131:83–91

    Article  Google Scholar 

  • Bustin S, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real time PCR experiments. Clin Chem 55:611–622

  • Cai S, Lashbrook CC (2006) Laser capture microdissection of plant cells from tape transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling. Plant J 48:628–637

    Article  Google Scholar 

  • Canovas A, Rincon G, Bevilacqua C, Islas-Trejo A, Brenaut P, Hovey RC, Boutinaud M, Morgenthaler C, VanKlompenberg MK, Martin P, Medrano JF (2014) Comparison of five different RNA sources to examine the lactating bovine mammary gland transcriptome using RNA-sequencing. Sci Rep 4:1–7

  • Chen J, Suo S, Tam PP, Han JDJ, Peng G, Jing N (2017) Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc 12:566–580

    Article  Google Scholar 

  • Cheng L, Zhang S, MacLennan GT, Williamson SR, Davidson DD, Wang M, Jones TD, Lopez-Beltran A, Montironi R (2012) Laser-assisted microdissection in translational research: theory, technical considerations, and future applications. Appl Immunohistochem Mol Morphol 21(1):31–47

  • Chung SH, Shen W (2015) Laser capture microdissection: from its principle to applications in research on neurodegeneration. Neural Regen Res 10(6):897–898

    Article  Google Scholar 

  • Civita P, Franceschi S, Aretini P, Ortenzi V, Menicagli M, Lessi F, Pasqualetti F, Naccarato AG, Mezzanti CM (2019) Laser capture microdissection and RNA-seq analysis: high sensitivity approaches to explain histopathological heterogeneity in human glioblastoma FFPE archived tissues. Front Oncol 9:482

  • Curran S, Murray GI (2005) An introduction to laser-based tissue microdissection techniques. Methods Mol Biol 293:3–8

    Google Scholar 

  • De Marchi T, Braakman RBH, Stingl C, van Duijn MM, Smid M, Foekens JA, Luider TM, Martens JWM, Umar A (2016) The advantage of laser-capture microdissection over whole tissue analysis in proteomic profiling studies. Proteomics 16:1474e–11485

    Article  Google Scholar 

  • Dembinsky D, Woll K, Saleem M et al (2007) Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol 145:575–588

    Article  Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001

    Article  Google Scholar 

  • Espina V, Heiby M, Pierobon M, Liotta L (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7:647–657

    Article  Google Scholar 

  • Gallego-Romero I, Pai A, Tung J, Gilad Y (2014) RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol 12:42

  • Gomez KS, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biolog 9:10

  • Gousset K, Gordon A, Kannan SK, Tovar J (2019) A novel microproteomic approach using laser capture microdissection to study cellular protrusions. Int J Mol Sci 20:1172

    Article  Google Scholar 

  • Ibberson D, Benes V, Muckenthaler MU, Castoldi M (2009) RNA degradation compromises the reliability of microRNA expression profiling. BMC Biotechnol 9:102

    Article  Google Scholar 

  • Jensen EC (2013) Laser capture microdissection. Anat Rec 296:1683–1687

    Article  Google Scholar 

  • Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LDN, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TSK, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A (2014) A draft map of the human proteome. Nature 509:575–581

  • Kitamura S, Tanahashi T, Aoyagi E, Nakagawa T, Okamoto K, Kimura T, Miyamoto H, Mitsui Y, Rokutan K, Muguruma N, Takayama T (2017) Response predictors of S-1, cisplatin, and docetaxel combination chemotherapy for metastatic gastric cancer: microarray analysis of whole human genes. Oncology 93:127–135

    Article  Google Scholar 

  • Kivivirta K, Herbert D, Lange M, Beuerlein K, Altmüller J, Becker A (2019) A protocol for laser microdissection (LMD) followed by transcriptome analysis of plant reproductive tissue in phylogenetically distant angiosperms. Plant Methods 1:151

    Article  Google Scholar 

  • Legres LG, Janin A, Masselon C, Bertheau P (2014) Beyond laser microdissection technology: follow the yellow brick road for cancer research. Am J Cancer Res 4(1):1–28

    Google Scholar 

  • Li J, Xing X, Li D, Zhang B, Mutch DG, Hagemann IS, Wang T (2017) Whole-genome DNA methylation profiling identifies epigenetic signatures of uterine carcinosarcoma. Neoplasia 19:100–111

  • Liao L, Cheng D, Wang J, Duong DM, Losik TG, Gearing M, Rees HD, Lah JJ, Levey AI, Peng J (2004) Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem 279:37061–37068

    Article  Google Scholar 

  • Liao XM, Yang XD, Jia J, Li JT, Xie XM, Su YA, Schmidt MV, Si TM, Wang XD (2014) Blockade of corticotropin-releasing hormone receptor 1 attenuates early-life stress-induced synaptic abnormalities in the neonatal hippocampus. Hippocampus 24(5):528–540

    Article  Google Scholar 

  • Liu Y, von Behrens I, Muthreich N (2010) Regulation of the pericycle proteome in maize (Zea mays L.) primary roots by RUM1 which is required for lateral root initiation. Eur J Cell Biol 89:236–241

    Article  Google Scholar 

  • Liu X, Xu X, Binghua L, Xueqing W, Guiqi W, Moran L (2015) RNA-seq transcriptome analysis of maize inbred carrying nicosulfuron-tolerant and nicosulfuron-susceptible alleles. Int J Mol Sci 16:5975–5989

    Article  Google Scholar 

  • Matsuda T, Matsushima M, Nabemoto M, Osaka M, Sakazono S, Masuko H, Takahashi H, Nakazono M, Iwano M, Takayama S, Shimizu K, Okumura K, Go S, Watanabe M, Suwabe K (2014) Transcriptional characteristics and differences in Arabidopsis stigmatic papilla cells pre- and post-pollination. Plant Cell Physiol 56(4):209

  • Miyatake Y, Ikeda H, Michimata R, Koizumi S, Ishizu A, Nishimura N, Yoshiki T (2004) Differential modulation of gene expression among rat tissues with warm ischemia. Exp Mol Pathol 77:222–230

    Article  Google Scholar 

  • Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596

    Article  Google Scholar 

  • Olsen S, Krause K (2019) A rapid preparation procedure for laser microdissection-mediated harvest of plant tissues for gene expression analysis. Plant Methods 15:88

    Article  Google Scholar 

  • Rajhi I (2011) Study of aerenchyma formation in maize roots under waterlogged conditions. Doctoral thesis. Faculty of Agriculture, University of Tokyo, Tokyo, p 28

  • Rajhi I, Mhadhbi H (2019) Mechanisms of aerenchyma formation in maize roots. AJAR 14(14):680–685

    Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamoura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    Article  Google Scholar 

  • Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrere S, Sallet E, Courcelle E, Moreau S, Debelle F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77:817–837

    Article  Google Scholar 

  • Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  Google Scholar 

  • Schütze K, Lahr G (1998) Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol 16:737–742

    Article  Google Scholar 

  • Ståhlberg A, Kubista M, Åman P (2011) Single-cell gene-expression profiling and its potential diagnostic applications. Expert Rev Mol Diagn 11:735e–7740

    Article  Google Scholar 

  • Takahashi H, Kamakura H, Sato Y, Shiono K, Abiko T, Tsutsumi N, Nagamura Y, Nishizawa NK, Nakazono M (2010) A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. J Plant Res 123:807–813

    Article  Google Scholar 

  • Takahashi H, Yamauchi T, Rajhi I, Nishizawa NK, Nakazono M (2015) Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Ann Bot 115(6):879–894

    Article  Google Scholar 

  • Tang F, Lao K, Surani MA (2011) Development and applications of single-cell transcriptome analysis. Nat Methods 8(4):6–11

    Article  Google Scholar 

  • Yamauchi T, Rajhi I, Nakazono M (2011) Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal Behav 6:759–761

    Article  Google Scholar 

  • Yi D, Kong L, Kankala RK, Wang Z (2016) Electrostatic capture following laser microdissection for the preparation of homogeneous biological specimens. Microsc Microanal 22:1329–1337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imene Rajhi.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Philippe Michaud, Chief Editor.

This paper was selected from the Tunisia-Japan Symposium on Science, Society and Technology (TJASSST 2019), Sousse, Tunisia. Communicated by M. Ksibi, Co-Editor-in-Chief and M. Kefi, Guest Editor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajhi, I., Takahashi, H., Shiono, K. et al. Laser microdissection: sample preparation and applications. Euro-Mediterr J Environ Integr 6, 6 (2021). https://doi.org/10.1007/s41207-020-00209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41207-020-00209-4

Keywords

Navigation