Skip to main content
Log in

Antimicrobial silver nanoparticles for water disinfection: a short review on recent advances

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

With increasing the biological contamination in drinking water day by day, the demand for fresh drinking water is also increasing. The limitations of current traditional water disinfection approaches demand the development of novel, safe, low-cost, and highly efficient techniques as alternatives. With the evolution of nanotechnology, the magnificent antimicrobial properties of silver nanoparticles (AgNPs) have started to be used broadly in water disinfection. Recent studies reflect that AgNP-based water disinfection methods are highly promising to replace conventional water disinfection methods simply and cost-effectively. To improve the efficiency of water disinfection with AgNP-based matrices, a clear understanding of the factors, affecting the water disinfection process is very much required. This review article comprises a complete discussion about the AgNPs incorporated matrices, effective for water disinfection starting from their synthesis to probable mechanism of action including the factors which control the water disinfection efficiency of those materials. This review article will be helpful to the competent authorities and researchers, working to improve water disinfection techniques, to develop more effective strategies with AgNP-based water disinfectant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Data are available upon request to the corresponding author.

References

  1. Srivastav AL, Patel N, Chaudhary VK (2020) Disinfection by-products in drinking water: Occurrence, toxicity and abatement. Environ Pollut 267:115474

    Article  CAS  PubMed  Google Scholar 

  2. Bhardwaj AK, Shukla A, Mishra RK, Singh S, Mishra V, Uttam K, Singh MP, Sharma S, Gopal R (2017) Power and time dependent microwave assisted fabrication of silver nanoparticles decorated cotton (SNDC) fibers for bacterial decontamination. Front Microbiol 8:330

    Article  PubMed  PubMed Central  Google Scholar 

  3. Walker CLF, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, O’Brien KL, Campbell H, Black RE (2013) Global burden of childhood pneumonia and diarrhoea. Lancet 381(9875):1405–1416

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yue L, Chen S, Wang S, Wang C, Hao X, Cheng YF (2019) Water disinfection using Ag nanoparticle–CuO nanowire co-modified 3D copper foam nanocomposites in high flow under low voltages. Environ Sci Nano 6(9):2801–2809

    Article  CAS  Google Scholar 

  5. Kanwar VS, Sharma A, Srivastav AL, Rani L (2020) Phytoremediation of toxic metals present in soil and water environment: a critical review. Environ Sci Pollut Res 27(36):44835–44860

    Article  CAS  Google Scholar 

  6. Srivastav AL, Kaur T (2020) Factors affecting the formation of disinfection by-products in drinking water: human health risk. Disinfection by-products in drinking water. Elsevier, Amsterdam, pp 433–450

    Chapter  Google Scholar 

  7. Ranjan M, Singh PK, Srivastav AL (2020) A review of bismuth-based sorptive materials for the removal of major contaminants from drinking water. Environ Sci Pollut Res 27(15):17492–17504

    Article  CAS  Google Scholar 

  8. Bain R, Johnston R, Mitis F, Chatterley C, Slaymaker T (2018) Establishing sustainable development goal baselines for household drinking water, sanitation and hygiene services. Water 10(12):1711

    Article  Google Scholar 

  9. Fukuda S, Noda K, Oki T (2019) How global targets on drinking water were developed and achieved. Nat Sustain 2(5):429–434

    Article  Google Scholar 

  10. Who G (2011) Guidelines for drinking-water quality. World Health Organ 216:303–304

    Google Scholar 

  11. Setty K, Jiménez A, Willetts J, Leifels M, Bartram J (2020) Global water, sanitation and hygiene research priorities and learning challenges under Sustainable Development Goal 6. Develop Policy Rev 38(1):64–84

    Article  Google Scholar 

  12. Backer H (2019) Water disinfection for international travelers, in Travel medicine. Elsevier, Amsterdam, pp 31–41

  13. Graham N (1999) Guidelines for drinking-water quality, Addendum to volume 1–recommendations. World Health Organisation, Geneva, 1998. Elsevier

  14. Bahcelioglu E, Unalan HE, Erguder TH (2021) Silver-based nanomaterials: A critical review on factors affecting water disinfection performance and silver release. Crit Rev Environ Sci Technol 51(20):2389–2423

    Article  CAS  Google Scholar 

  15. Chakraborty D, Sharma V, Agnihotri S, Mukherji S, Mukherji S (2017) Disinfection of water in a batch reactor using chloridized silver surfaces. J Water Process Eng 16:41–49

    Article  Google Scholar 

  16. Thomas KV, Bijlsma L, Castiglioni S, Covaci A, Emke E, Grabic R, Hernández F, Karolak S, Kasprzyk-Hordern B, Lindberg RH (2012) Comparing illicit drug use in 19 European cities through sewage analysis. Sci Total Environ 432:432–439

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Hu Y, Jiang L, Sun X, Wu J, Ma L, Zhou Y, Lin K, Luo Y, Cui C (2021) Risk assessment of antibiotic resistance genes in the drinking water system. Sci Total Environ 800:149650

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Biswas P, Bandyopadhyaya R (2016) Water disinfection using silver nanoparticle impregnated activated carbon: Escherichia coli cell-killing in batch and continuous packed column operation over a long duration. Water Res 100:105–115

    Article  CAS  PubMed  Google Scholar 

  19. Feynman RP (1959) Plenty of Room at the Bottom. in APS annual meeting

  20. El Naschie MS (2006) Nanotechnology for the developing world. Chaos Solitons Fractals 30(4):769–773

    Article  ADS  Google Scholar 

  21. Staggers N, McCasky T, Brazelton N, Kennedy R (2008) Nanotechnology: The coming revolution and its implications for consumers, clinicians, and informatics. Nurs Outlook 56(5):268–274

    Article  PubMed  Google Scholar 

  22. Manimaran M, Muthuvel A, Said NM (2023) Microwave-assisted green synthesis of SnO2 nanoparticles and their photocatalytic degradation and antibacterial activities. Nanotechnol Environ Eng 8(2):413–423

    Article  CAS  Google Scholar 

  23. Al-Zaqri N, Umamakeshvari K, Mohana V, Muthuvel A, Boshaala A (2022) Green synthesis of nickel oxide nanoparticles and its photocatalytic degradation and antibacterial activity. J Mater Sci: Mater Electron 33(15):11864–11880

    CAS  Google Scholar 

  24. Zhou Z-Y, Tian N, Li J-T, Broadwell I, Sun S-G (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40(7):4167–4185

    Article  CAS  PubMed  Google Scholar 

  25. Barman A, Dutta T, Khamrui A, Basu A (2020) Review on green synthesis of ZnO nano particles and their applications. In: Proceedings of Industry Interactive Innovations in Science, Engineering & Technology (I3SET2K19)

  26. Dutta T, Khan AA, Baildya N, Mondal P, Ghosh NN (2022) Preparation of ZnO/chitosan nanocomposite and its applications to durable antibacterial, UV-blocking, and textile properties. In: Biodegradable and environmental applications of bionanocomposites. Springer, pp 169–187

  27. Ni D, Wei H, Chen W, Bao Q, Rosenkrans ZT, Barnhart TE, Ferreira CA, Wang Y, Yao H, Sun T (2019) Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection. Adv Mater 31(40):1902956

    Article  CAS  Google Scholar 

  28. Devi MS, Srinivasan S, Muthuvel A (2023) Selenium nanomaterial is a promising nanotechnology for biomedical and environmental remediation: a detailed review. Biocatalysis and Agricultural Biotechnology:102766 (2023).

  29. Mazzola L (2003) Commercializing nanotechnology. Nat Biotechnol 21(10):1137–1143

    Article  CAS  PubMed  Google Scholar 

  30. Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci: Nanosci Nanotechnol 3(3):033002

    ADS  Google Scholar 

  31. Patra JK, Gouda S (2013) Application of nanotechnology in textile engineering: an overview. J Eng Technol Res 5(5):104–111

    Article  Google Scholar 

  32. Oke AE, Aigbavboa CO, Semenya K (2017) Energy savings and sustainable construction: examining the advantages of nanotechnology. Energy Procedia 142:3839–3843

    Article  Google Scholar 

  33. Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51(8):723–730

    Article  CAS  PubMed  Google Scholar 

  34. McNamara K, Tofail SA (2017) Nanoparticles in biomedical applications. Adv Phys: X 2(1):54–88

    CAS  Google Scholar 

  35. G. Kamarajan, D.B. Anburaj, V. Porkalai, A. Muthuvel, and G. Nedunchezhian, Effect of temperature on optical, structural, morphological and antibacterial properties of biosynthesized ZnO nanoparticles. Journal of the Nigerian Society of Physical Sciences:892–892 (2022).

  36. Kaiser J-P, Zuin S, Wick P (2013) Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion. Sci Total Environ 442:282–289

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Lucas A (1928) Silver in ancient times. J Egypt Archaeol 14(1):313–319

    Article  Google Scholar 

  38. B. Calderón-Jiménez, M.E. Johnson, A.R. Montoro Bustos, K.E. Murphy, M.R. Winchester, and J.R. Vega Baudrit, Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Frontiers in chemistry. 5:6 (2017).

  39. Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534

    Article  PubMed  PubMed Central  Google Scholar 

  40. Agrawal S, Bhatt M, Rai SK, Bhatt A, Dangwal P, Agrawal PK (2018) Silver nanoparticles and its potential applications: a review. J Pharmacognosy Phytochem 7(2):930–937

    Google Scholar 

  41. B. Anandh, A. Muthuvel, and M. Emayavaramban, Bio synthesis and characterization of silver nanoparticles using Lagenaria siceraria leaf extract and their antibacterial activity. International Letters of Chemistry, Physics and Astronomy. 19 (2014).

  42. M. Raffi, F. Hussain, T. Bhatti, J. Akhter, A. Hameed, and M. Hasan, Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of materials science and technology. 24(2):192–196 (2008).

  43. G. Nangmenyi and J. Economy, Nanometallic particles for oligodynamic microbial disinfection, in Nanotechnology applications for clean water, Elsevier.3–15 (2009).

  44. Z. Ming Xiu, bo Zhang, Q.; Puppala, HL; Colvin, VL; Alvarez, PJJ Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Lett. 12:4271–4275 (2012).

  45. Mariappan P, Kiran KR, Swathy PS, Kaniyassery A, Thorat SA, Bhagyashree P, Thiruvengadam M, Muthusamy A (2022) Sacred groves and nakshatravan trees-A comparative analysis for their medicinal properties and volatile compounds for human health. S Afr J Bot 151:623–638

    Article  CAS  Google Scholar 

  46. Gelete G, Gokcekus H, Uzun D, Uzun B, Gichamo T (2020) Evaluating disinfection techniques of water treatment. Desal Water Treat 177:408–415

    Article  CAS  Google Scholar 

  47. Sun X, Park JJ, Kim HS, Lee SH, Seong SJ, Om AS, Yoon JY (2018) Experimental investigation of the thermal and disinfection performances of a novel hydrodynamic cavitation reactor. Ultrason Sonochem 49:13–23

    Article  CAS  PubMed  Google Scholar 

  48. Kraft A (2008) Electrochemical water disinfection: a short review. Platin Met Rev 52(3):177–185

    Article  CAS  Google Scholar 

  49. Arrojo S, Benito Y, Tarifa AM (2008) A parametrical study of disinfection with hydrodynamic cavitation. Ultrason Sonochem 15(5):903–908

    Article  CAS  PubMed  Google Scholar 

  50. Gadgil A (1998) Drinking water in developing countries. Annu Rev Energy Env 23(1):253–286

    Article  Google Scholar 

  51. S.Y. Rikta, Application of nanoparticles for disinfection and microbial control of water and wastewater. Nanotechnology in water and wastewater treatment:159–176 (2019).

  52. Haaken D, Dittmar T, Schmalz V, Worch E (2014) Disinfection of biologically treated wastewater and prevention of biofouling by UV/electrolysis hybrid technology: influence factors and limits for domestic wastewater reuse. Water Res 52:20–28

    Article  CAS  PubMed  Google Scholar 

  53. Lee O-M, Kim HY, Park W, Kim T-H, Yu S (2015) A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process. J Hazard Mater 295:201–208

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Bergmann H, Iourtchouk T, Schöps K, Bouzek K (2002) New UV irradiation and direct electrolysis—promising methods for water disinfection. Chem Eng J 85(2–3):111–117

    Article  CAS  Google Scholar 

  55. Winward G, Avery L, Stephenson T, Jefferson B (2008) Ultraviolet (UV) disinfection of grey water: Particle size effects. Environ Technol 29(2):235–244

    Article  CAS  PubMed  Google Scholar 

  56. Abd-Elmaksoud S, Naranjo JE, Gerba CP (2013) Assessment of a portable handheld UV light device for the disinfection of viruses and bacteria in water. Food Environ Virol 5(2):87–90

    Article  PubMed  Google Scholar 

  57. McGuigan KG, Conroy RM, Mosler H-J, du Preez M, Ubomba-Jaswa E, Fernandez-Ibanez P (2012) Solar water disinfection (SODIS): a review from bench-top to roof-top. J Hazard Mater 235:29–46

    Article  PubMed  Google Scholar 

  58. Fetyan NA, Salem Attia TM (2020) Water purification using ultrasound waves: application and challenges. Arab J Basic Appl Sci 27(1):194–207

    Article  Google Scholar 

  59. Kerwick M, Reddy S, Chamberlain A, Holt D (2005) Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochim Acta 50(25–26):5270–5277

    Article  CAS  Google Scholar 

  60. Rajab M, Heim C, Letzel T, Drewes JE, Helmreich B (2015) Electrochemical disinfection using boron-doped diamond electrode–The synergetic effects of in situ ozone and free chlorine generation. Chemosphere 121:47–53

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Esakkimuthu T, Sivakumar D, Akila S (2014) Application of nanoparticles in wastewater treatment. Pollut Res 33(03):567–571

    CAS  Google Scholar 

  62. Rutala W, HICPAC (2008) Guideline for Disinfection and Sterilization in Healthcare Facilities. http://www.cdc.gov/ncidod/dhqp/pdf/guidelines/Disinfection_Nov_2008.pdf

  63. Dutta T, Ghosh NN, Das M, Adhikary R, Mandal V, Chattopadhyay AP (2020) Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies. J Environ Chem Eng 8(4):104019

    Article  CAS  Google Scholar 

  64. Dutta T, Ghosh NN, Chattopadhyay AP, Das M (2019) Chitosan encapsulated water-soluble silver bionanocomposite for size-dependent antibacterial activity. Nano-Structures & Nano-Objects 20:100393

    Article  CAS  Google Scholar 

  65. Dutta T, Chowdhury SK, Ghosh NN, Chattopadhyay AP, Das M, Mandal V (2022) Green synthesis of antimicrobial silver nanoparticles using fruit extract of Glycosmis pentaphylla and its theoretical explanations. J Mol Struct 1247:131361

    Article  CAS  Google Scholar 

  66. Dutta T, Chattopadhyay AP, Ghosh NN, Khatua S, Acharya K, Kundu S, Mitra D, Das M (2020) Biogenic silver nanoparticle synthesis and stabilization for apoptotic activity; insights from experimental and theoretical studies. Chem Pap 74:4089–4101

    Article  CAS  Google Scholar 

  67. Dutta T, Chattopadhyay AP, Mandal M, Ghosh NN, Mandal V, Das M (2020) Facile green synthesis of silver bionanocomposite with size dependent antibacterial and synergistic effects: a combined experimental and theoretical studies. J Inorg Organomet Polym Mater 30:1839–1851

    Article  CAS  Google Scholar 

  68. S.K. Chowdhury, T. Dutta, A.P. Chattopadhyay, N.N. Ghosh, S. Chowdhury, and V. Mandal, Isolation of antimicrobial Tridecanoic acid from Bacillus sp. LBF-01 and its potentialization through silver nanoparticles synthesis: a combined experimental and theoretical studies. Journal of Nanostructure in Chemistry:1–15 (2021).

  69. Wong KK, Liu X (2010) Silver nanoparticles—the real “silver bullet” in clinical medicine? MedChemComm 1(2):125–131

    Article  CAS  Google Scholar 

  70. Alexander JW (2009) History of the medical use of silver. Surg Infect 10(3):289–292

    Article  Google Scholar 

  71. El-Aassar AH, Said M, Abdel-Gawad A, Shawky H (2013) Using silver nanoparticles coated on activated carbon granules in columns for microbiological pollutants water disinfection in Abu Rawash area, Great Cairo. Egypt Australian Journal of Basic and Applied Sciences 7(1):422–432

    CAS  Google Scholar 

  72. Lalley J, Dionysiou DD, Varma RS, Shankara S, Yang DJ, Nadagouda MN (2014) Silver-based antibacterial surfaces for drinking water disinfection—an overview. Curr Opin Chem Eng 3:25–29

    Article  Google Scholar 

  73. Stabryla LM, Johnston KA, Millstone JE, Gilbertson LM (2018) Emerging investigator series: it’s not all about the ion: support for particle-specific contributions to silver nanoparticle antimicrobial activity. Environ Sci Nano 5(9):2047–2068

    Article  CAS  Google Scholar 

  74. Hossain F, Perales-Perez OJ, Hwang S, Román F (2014) Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci Total Environ 466:1047–1059

    Article  PubMed  ADS  Google Scholar 

  75. Quinteros M, Aristizábal VC, Dalmasso PR, Paraje MG, Páez PL (2016) Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol In Vitro 36:216–223

    Article  CAS  PubMed  Google Scholar 

  76. N. Durán, M. Durán, M.B. De Jesus, A.B. Seabra, W.J. Fávaro, and G. Nakazato, Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: nanotechnology, biology and medicine. 12(3):789–799 (2016).

  77. N. Silvestry-Rodriguez, E.E. Sicairos-Ruelas, C.P. Gerba, and K.R. Bright, Silver as a disinfectant. Reviews of environmental contamination and toxicology:23–45 (2007).

  78. M. Tartanson, L. Soussan, M. Rivallin, C. Chis, D. Penaranda, R. Lapergue, P. Calmels, and C. Faur, A new silver based composite material for SPA water disinfection. water research. 63:135–146 (2014).

  79. Durán N, Marcato PD, Conti RD, Alves OL, Costa F, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    Article  Google Scholar 

  80. Maillard J-Y, Hartemann P (2013) Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol 39(4):373–383

    Article  CAS  PubMed  Google Scholar 

  81. Pourali P, Baserisalehi M, Afsharnezhad S, Behravan J, Alavi H, Hosseini A (2012) Biological synthesis of silver and gold nanoparticles by bacteria in different temperatures (37 C and 50 C). J Pure Appl Microbiol 6(2):757–763

    CAS  Google Scholar 

  82. Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA (2013) Toxicity of silver nanoparticles in macrophages. Small 9(15):2576–2584

    Article  CAS  PubMed  Google Scholar 

  83. Kittler S, Greulich C, Diendorf J, Koller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554

    Article  CAS  Google Scholar 

  84. Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20(8):085102

    Article  PubMed  ADS  Google Scholar 

  85. Liau S, Read D, Pugh W, Furr J, Russell A (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett Appl Microbiol 25(4):279–283

    Article  CAS  PubMed  Google Scholar 

  86. Kalwar K, Shan D (2018) Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism–a mini review. Micro & Nano Letters 13(3):277–280

    Article  CAS  Google Scholar 

  87. Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP (2014) Antibacterial activity of synthesized silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients. Journal of Nanomedicine & Nanotechnology 5(2):1

    Article  Google Scholar 

  88. Kumar G, Verma A, Joshi P, Arya A (2013) Antibacterial activity of silver nanoparticles synthesized using weeds. Medicinal Plants-International Journal of Phytomedicines and Related Industries 5(1):34–38

    Article  Google Scholar 

  89. Agarwal P, Mehta A, Kachhwaha S, Kothari S (2013) Green synthesis of silver nanoparticles and their activity against Mycobacterium tuberculosis. Advanced Science, Engineering and Medicine 5(7):709–714

    Article  CAS  Google Scholar 

  90. Thakur N, Gaikar VG, Sen D, Mazumder S, Pandita NS (2017) Phytosynthesis of silver nanoparticles using walnut (Juglans regia) bark with characterization of the antibacterial activity against Streptococcus mutans. Anal Lett 50(4):690–711

    Article  CAS  Google Scholar 

  91. Krishnaraj C, Jagan E, Rajasekar S, Selvakumar P, Kalaichelvan P, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf, B 76(1):50–56

    Article  CAS  Google Scholar 

  92. I.A. Adelere, A. Lateef, D.O. Aboyeji, R. Abdulsalam, N.U. Adabara, and J.D. Bala, Biosynthesis of silver nanoparticles using aqueous extract of Buchholzia coriacea (wonderful kola) seeds and their antimicrobial activities. (2017).

  93. Saratale RG, Benelli G, Kumar G, Kim DS, Saratale GD (2018) Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ Sci Pollut Res 25:10392–10406

    Article  CAS  Google Scholar 

  94. Ibraheim MH, Ibrahiem A, Dalloul T (2016) Biosynthesis of silver nanoparticles using pomegranate juice extract and its antibacterial activity. International Journal of Applied Sciences and Biotechnology 4(3):254–258

    Article  Google Scholar 

  95. Khatami M, Sharifi I, Nobre MA, Zafarnia N, Aflatoonian MR (2018) Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem Lett Rev 11(2):125–134

    Article  CAS  Google Scholar 

  96. Saravanakumar A, Peng MM, Ganesh M, Jayaprakash J, Mohankumar M, Jang HT (2017) Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artificial cells, nanomedicine, and biotechnology 45(6):1165–1171

    Article  CAS  Google Scholar 

  97. Kumar PV, Pammi S, Kollu P, Satyanarayana K, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod 52:562–566

    Article  Google Scholar 

  98. Banerjee P, Satapathy M, Mukhopahayay A, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing 1:1–10

    Article  Google Scholar 

  99. Mauter MS, Wang Y, Okemgbo KC, Osuji CO, Giannelis EP, Elimelech M (2011) Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Appl Mater Interfaces 3(8):2861–2868

    Article  CAS  PubMed  Google Scholar 

  100. Villanueva CM, Kogevinas M, Cordier S, Templeton MR, Vermeulen R, Nuckols JR, Nieuwenhuijsen MJ, Levallois P (2014) Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs. Environ Health Perspect 122(3):213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hanif Z, Khan ZA, Siddiqui MF, Tariq MZ, Park S, Park SJ (2020) Tannic acid-mediated rapid layer-by-layer deposited non-leaching silver nanoparticles hybridized cellulose membranes for point-of-use water disinfection. Carbohyd Polym 231:115746

    Article  CAS  Google Scholar 

  102. H. Tang, A.D. Covington, and R. Hancock, Structure–activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolymers: Original Research on Biomolecules. 70(3):403–413 (2003).

  103. Gopiraman M, Jatoi AW, Hiromichi S, Yamaguchi K, Jeon H-Y, Chung I-M, Soo KI (2016) Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity. Carbohyd Polym 149:51–59

    Article  CAS  Google Scholar 

  104. Zhu X, Loh XJ (2015) Layer-by-layer assemblies for antibacterial applications. Biomaterials science 3(12):1505–1518

    Article  CAS  PubMed  Google Scholar 

  105. Mecha C, Pillay VL (2014) Development and evaluation of woven fabric microfiltration membranes impregnated with silver nanoparticles for potable water treatment. J Membr Sci 458:149–156

    Article  CAS  Google Scholar 

  106. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  CAS  PubMed  Google Scholar 

  107. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45(5):1992–1998

    Article  CAS  PubMed  ADS  Google Scholar 

  108. W.V. Voigt, Water stable, antimicrobial active nanofibres generated by electrospinning from aqueous spinning solutions, Aachen, Techn. Hochsch., Diss., 2009 (2009).

  109. Z. Karim, R. Adnan, and M.S. Ansari, Low concentration of silver nanoparticles not only enhances the activity of horseradish peroxidase but alter the structure also. (2012).

  110. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63

    Article  CAS  PubMed  Google Scholar 

  111. Giri N, Natarajan R, Gunasekaran S, Shreemathi S (2011) UV–vis spectroscopic study of PVP–nano silver complex and antibacterial properties of it’s fibrous membranes. World J Sci Technol 1:49–53

    CAS  Google Scholar 

  112. Li J-H, Shao X-S, Zhou Q, Li M-Z, Zhang Q-Q (2013) The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance. Appl Surf Sci 265:663–670

    Article  CAS  ADS  Google Scholar 

  113. Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43(3):715–723

    Article  CAS  PubMed  Google Scholar 

  114. Mthombeni NH, Mpenyana-Monyatsi L, Onyango MS, Momba MN (2012) Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column. J Hazard Mater 217:133–140

    Article  PubMed  Google Scholar 

  115. M.A. Majeed Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, and M.S. AlSalhi, Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale research letters. 6:1–8 (2011).

  116. F. Heidarpour, W. Ghani, F. Ahmadun, S. Sobri, M. Zargar, and M. Mozafari, NANO SILVER-COATED POLYPROPYLENE WATER FILTER: I. MANUFACTURE BY ELECTRON BEAM GUN USING A MODIFIED BALZERS 760 MACHINE. Digest Journal of Nanomaterials & Biostructures (DJNB). 5(3) (2010).

  117. Mollahosseini A, Rahimpour A, Jahamshahi M, Peyravi M, Khavarpour M (2012) The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane. Desalination 306:41–50

    Article  CAS  Google Scholar 

  118. Matsumura Y, Yoshikata K, Kunisaki S-I, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278–4281

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  119. Feng QL, Wu J, Chen GQ, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  PubMed  Google Scholar 

  120. I. Sondi and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science. 275(1):177–182 (2004).

  121. Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074

    Article  CAS  PubMed  Google Scholar 

  122. Rao G, Brastad KS, Zhang Q, Robinson R, He Z, Li Y (2016) Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane. Front Environ Sci Eng 10:1–9

    Article  CAS  Google Scholar 

  123. Liga MV, Bryant EL, Colvin VL, Li Q (2011) Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res 45(2):535–544

    Article  CAS  PubMed  Google Scholar 

  124. He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15(23):4401–4406

    Article  CAS  Google Scholar 

  125. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohyd Polym 72(1):43–51

    Article  CAS  Google Scholar 

  126. Das SK, Khan MMR, Parandhaman T, Laffir F, Guha AK, Sekaran G, Mandal AB (2013) Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control. Nanoscale 5(12):5549–5560

    Article  CAS  PubMed  ADS  Google Scholar 

  127. Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017

    Article  CAS  PubMed  ADS  Google Scholar 

  128. Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914

    Article  CAS  PubMed  ADS  Google Scholar 

  129. Jiang S, Tang C, Gong Z, Zhang Z, Wang D, Fan M (2020) Facile preparation of chitosan coated silver nanoparticles embedded cotton fabric for point-of-use water disinfection. Mater Lett 277:128256

    Article  CAS  Google Scholar 

  130. Martínez-Castañon G-A, Nino-Martinez N, Martinez-Gutierrez F, Martínez-Mendoza J, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348

    Article  Google Scholar 

  131. Oyanedel-Craver VA, Smith JA (2008) Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol 42(3):927–933

    Article  CAS  PubMed  ADS  Google Scholar 

  132. Kallman EN, Oyanedel-Craver VA, Smith JA (2011) Ceramic filters impregnated with silver nanoparticles for point-of-use water treatment in rural Guatemala. J Environ Eng 137(6):407–415

    Article  CAS  Google Scholar 

  133. Sondi I, Goia DV, Matijević E (2003) Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260(1):75–81

    Article  CAS  PubMed  ADS  Google Scholar 

  134. Karumuri AK, Oswal DP, Hostetler HA, Mukhopadhyay SM (2013) Silver nanoparticles attached to porous carbon substrates: robust materials for chemical-free water disinfection. Mater Lett 109:83–87

    Article  CAS  Google Scholar 

  135. Loo S-L, Fane AG, Lim T-T, Krantz WB, Liang Y-N, Liu X, Hu X (2013) Superabsorbent cryogels decorated with silver nanoparticles as a novel water technology for point-of-use disinfection. Environ Sci Technol 47(16):9363–9371

    Article  CAS  PubMed  ADS  Google Scholar 

  136. Loo S-L, Fane AG, Krantz WB, Lim T-T (2012) Emergency water supply: a review of potential technologies and selection criteria. Water Res 46(10):3125–3151

    Article  CAS  PubMed  Google Scholar 

  137. Kirsebom H, Mattiasson B (2011) Cryostructuration as a tool for preparing highly porous polymer materials. Polym Chem 2(5):1059–1062

    Article  CAS  Google Scholar 

  138. Önnby L, Pakade V, Mattiasson B, Kirsebom H (2012) Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Res 46(13):4111–4120

    Article  PubMed  Google Scholar 

  139. Savina IN, English CJ, Whitby RL, Zheng Y, Leistner A, Mikhalovsky SV, Cundy AB (2011) High efficiency removal of dissolved As (III) using iron nanoparticle-embedded macroporous polymer composites. J Hazard Mater 192(3):1002–1008

    Article  CAS  PubMed  Google Scholar 

  140. Dragan ES, Apopei DF (2011) Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes. Chem Eng J 178:252–263

    Article  CAS  Google Scholar 

  141. Apopei DF, Dinu MV, Trochimczuk AW, Dragan ES (2012) Sorption isotherms of heavy metal ions onto semi-interpenetrating polymer network cryogels based on polyacrylamide and anionically modified potato starch. Ind Eng Chem Res 51(31):10462–10471

    Article  CAS  Google Scholar 

  142. Loo S-L, Krantz WB, Lim T-T, Fane AG, Hu X (2013) Design and synthesis of ice-templated PSA cryogels for water purification: towards tailored morphology and properties. Soft Matter 9(1):224–234

    Article  CAS  ADS  Google Scholar 

  143. Ruiz P, Munoz M, Macanás J, Muraviev DN (2010) Intermatrix synthesis of polymer− copper nanocomposites with tunable parameters by using copper comproportionation reaction. Chem Mater 22(24):6616–6623

    Article  CAS  Google Scholar 

  144. Alonso A, Vigués N, Muñoz-Berbel X, Macanás J, Muñoz M, Mas J, Muraviev DN (2011) Environmentally-safe bimetallic Ag@ Co magnetic nanocomposites with antimicrobial activity. Chem Commun 47(37):10464–10466

    Article  CAS  Google Scholar 

  145. Moulder J, Stickle W, Sobol P, Bomben K, Muilenberg G (1992) Handbook of X-ray Photoelectron Spectroscopy. PerkinElmer. Inc., Waltham, MA, USA

    Google Scholar 

  146. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  147. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Article  CAS  PubMed  ADS  Google Scholar 

  148. Fan M, Gong L, Huang Y, Wang D, Gong Z (2018) Facile preparation of silver nanoparticle decorated chitosan cryogels for point-of-use water disinfection. Sci Total Environ 613:1317–1323

    Article  PubMed  ADS  Google Scholar 

  149. Loo S-L, Krantz WB, Fane AG, Hu X, Lim T-T (2015) Effect of synthesis routes on the properties and bactericidal activity of cryogels incorporated with silver nanoparticles. RSC Adv 5(55):44626–44635

    Article  CAS  ADS  Google Scholar 

  150. Gaafar M, Mady R, Diab R, Shalaby TI (2014) Chitosan and silver nanoparticles: promising anti-toxoplasma agents. Exp Parasitol 143:30–38

    Article  CAS  PubMed  Google Scholar 

  151. Ahmad Z, Maqsood M, Mehmood M, Ahmad MJ, Choudhary MA (2017) Synthesis and characterization of pure and nano-Ag impregnated chitosan beads and determination of catalytic activities of nano-Ag. Bulletin of Chemical Reaction Engineering & Catalysis 12(1):127–135

    Article  CAS  Google Scholar 

  152. Chen Z, Zhang X, Cao H, Huang Y (2013) Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols. Analyst 138(8):2343–2349

    Article  CAS  PubMed  ADS  Google Scholar 

  153. E. Braun-Howland, J. Best, R. Blodgett, L. Boczek, G. Dichter, and C. Johnson, 9221 Multiple-tube fermentation technique for members of the coliform group. Standard Methods for the examination of water and wastewater,(Method: 9221E). American Public Health Association, Washington, DC:1–12 (2017).

  154. Nath S, Ghosh SK, Kundu S, Praharaj S, Panigrahi S, Basu S, Pal T (2005) A convenient approach to synthesize silver nanoshell covered functionalized polystyrene beads: A substrate for surface enhanced Raman scattering. Mater Lett 59(29–30):3986–3989

    Article  CAS  Google Scholar 

  155. B. Smith, Infrared spectral interpretation: a systematic approach. CRC press(2018).

  156. Özacar M, Şengil İA, Türkmenler H (2008) Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chem Eng J 143(1–3):32–42

    Article  Google Scholar 

  157. Srinivasan N, Shankar P, Bandyopadhyaya R (2013) Plasma treated activated carbon impregnated with silver nanoparticles for improved antibacterial effect in water disinfection. Carbon 57:1–10

    Article  CAS  Google Scholar 

  158. R. Sato‐Berrú, R. Redón, A. Vázquez‐Olmos, and J.M. Saniger, Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface‐enhanced Raman spectroscopy. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. 40(4):376–380 (2009).

  159. R.C. Bansal and M. Goyal, Activated carbon adsorption. CRC press(2005).

  160. D. Maity, M. Kanti Bain, B. Bhowmick, J. Sarkar, S. Saha, K. Acharya, M. Chakraborty, and D. Chattopadhyay, In situ synthesis, characterization, and antimicrobial activity of silver nanoparticles using water soluble polymer. Journal of Applied Polymer Science. 122(4):2189–2196 (2011).

  161. Liu C, Yang X, Yuan H, Zhou Z, Xiao D (2007) Preparation of silver nanoparticle and its application to the determination of ct-DNA. Sensors 7(5):708–718

    Article  CAS  PubMed Central  ADS  Google Scholar 

  162. A.R. Gliga, S. Skoglund, I. Odnevall Wallinder, B. Fadeel, and H.L. Karlsson, Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Particle and fibre toxicology. 11:1–17 (2014).

  163. Feng A, Cao J, Wei J, Chang F, Yang Y, Xiao Z (2018) Facile synthesis of silver nanoparticles with high antibacterial activity. Materials 11(12):2498

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge JIS College of Engineering, Kalyani, Nadia, WB, India, for infrastructural support.

Funding

The authors acknowledge no financial support from any funding resources.

Author information

Authors and Affiliations

Authors

Contributions

Tanmoy Dutta and Jit Chakraborty: conceptualization; Ananya Barman, Swagata Bhattacharjee, Jit Chakraborty, and Trina Dutta: Data collection and writing; Tanmoy Dutta: review, and validation.

Corresponding author

Correspondence to Tanmoy Dutta.

Ethics declarations

Competing interests

The author declares no competing interests.

Ethical approval

This manuscript is only submitted to this journal.

Consent to participate

Not applicable.

Consent to publish

Authors consent to publish this work. No other participant involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, T., Barman, A., Bhattacherjee, S. et al. Antimicrobial silver nanoparticles for water disinfection: a short review on recent advances. Nanotechnol. Environ. Eng. 9, 111–131 (2024). https://doi.org/10.1007/s41204-023-00354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-023-00354-5

Keywords

Navigation